Math, asked by premchand2, 1 year ago

(1+tanA+secA)(1+cotA-cosecA) Evaluate the following

Answers

Answered by ashishks1912
68

GIVEN :

The expression is (1+tanA+secA)(1+cotA-cosecA)

TO EVALUATE :

The given expression (1+tanA+secA)(1+cotA-cosecA)

SOLUTION :

Given expression is (1+tanA+secA)(1+cotA-cosecA)

Now solving the given expression as below

(1+tanA+secA)(1+cotA-cosecA)

=(1+\frac{sinA}{cosA}+\frac{1}{cosA})(1+\frac{cosA}{sinA}-\frac{1}{sinA})

By using the trignometric formulae :

i) tanx=\frac{sinx}{cosx}

ii) secx=\frac{1}{cosx}

iii) cotx=\frac{cosx}{sinx}

iv) cosecx=\frac{1}{secx}

=(\frac{(cosA+sinA)+1}{cosA})(\frac{(sinA+cosA)-1}{sinA})

=(\frac{(cosA+sinA)+1}{cosA})(\frac{(cosA+sinA)-1}{sinA})

By using the Algebraic identity :

(a+b)(a-b)=a^2-b^2

=\frac{(cosA+sinA)^2-1^2}{cosA sinA}

By using the Algebraic identity :

(a+b)^2=a^2+2ab+b^2

=\frac{cos^2A+sin^2A+2cosA sinA-1}{cosA sinA}

By using the trignometric identity :

cos^2x+sin^2x=1

=\frac{1+2cosA sinA-1}{cosA sinA}

=\frac{2cosA sinA}{cosA sinA}

= 2

(1+tanA+secA)(1+cotA-cosecA)=2

∴ the evaluated value for the given expression (1+tanA+secA)(1+cotA-cosecA) is 2

Answered by dillurock143
23

Here is your answer and mark me as a brilliant

- Dillu_rock_z

Attachments:
Similar questions