Math, asked by sauravsingh926, 10 months ago

1 upon √6-√5 rationalise the denominator​

Answers

Answered by ankushsaini23
10

Answer:

\huge\boxed{\fcolorbox{red}{pink}{Your's Answer}}

According to question:-

 \frac{1}{ \sqrt{6} -  \sqrt{5}  }

Rationalising factor= 6+5

 \frac{1}{ \sqrt{6}  -   \sqrt{5}  }  \times  \frac{ \sqrt{6} +  \sqrt{5}  }{ \sqrt{6} +  \sqrt{5}  }

 \frac{ \sqrt{6} +  \sqrt{5}  }{( { \sqrt{6} })^{2} - ( { \sqrt{5} })^{2}  }

 \frac{ \sqrt{6} +  \sqrt{5}  }{6 - 5}

 \sqrt{6}  +  \sqrt{5}

  • hope it helps you...
  • please mark it as a brainlist answer...
  • also please rate thanks and follow me...
  • stay home STAY SAFE...

<marquee behaviour-move><font color="orange"><h1>It'z ANKUSH here</h1></marquee>

XOᙠNI ɹoɟ xuɐɥʇ 0⇂

Answered by 007Boy
1

Question :-

 \frac{1}{ \sqrt{6}  -  \sqrt{5} }

What to do = rationalisation?

Solution :-

 \frac{1}{ \sqrt{6} -  \sqrt{5}  }

Now multiply by in the numerator and the denominator

( \sqrt{6}  +  \sqrt{5} )

Hence,

( \frac{1}{ \sqrt{6}  -  \sqrt{5} } ) \times ( \frac{ \sqrt{6}  +  \sqrt{5} }{  \sqrt{6}  + \sqrt{5} } ) \\  \\  = ( \frac{ \sqrt{6}  +  \sqrt{5} }{6 - 5} ) =  \sqrt{6}  +  \sqrt{5}  \\  \\  = 2.44 + 2.23 =4.6 7 \:  \:  \: ans

Formulae used :-

1)( \sqrt{x} ) {}^{2}  = x

Example :-

( \sqrt{7} ) {}^{2}  = 7

2)(x - y)(x + y) =  {x}^{2}  - y {}^{2}

Similar questions