Math, asked by Anonymous, 5 months ago

10. If a and B are zeroes of a quadratic polynomial P(x) = 4x2-5x-1. Find the value of a²?ß+aß²​

Answers

Answered by IdyllicAurora
60

Answer :-

 \: \\ \: \boxed{\boxed{\rm{\mapsto \: \: \: Firstly \: let's \: understand \: the \: concept \: used}}}

Here the concept of Quadratic Polynomials has been used. If we are given a Quadratic Polynomial of form p(x) = ax² + bx + c then its zeroes will be α and β. Here Quadratic Polynomial intersects x - axis twice and gives two solutions of the same polynomial.

_______________________________________________

Formula Used :-

 \: \\ \: \large{\boxed{\boxed{\sf{\alpha \: + \: \beta \: \: = \: \: \bf{\dfrac{(-b)}{a}}}}}}

 \: \\ \: \large{\boxed{\boxed{\sf{\alpha \: \times \: \beta \: \: = \: \: \bf{\dfrac{(c)}{a}}}}}}

_______________________________________________

To Find :-

 \: \\ \: \large{\rm{\alpha^{2} \beta \: \: + \: \: \beta^{2} \alpha \: \: = \: \: \bf{?}}}

_______________________________________________

Question :-

If α and β are zeroes of a quadratic polynomial p(x) = 4x² - 5x - 1. Find the value of αβ + β²α

_______________________________________________

Solution :-

Given,

p(x) = 4x² - 5x + 1

Here, a = 4 , b = -5 and c = 1

Let's solve it by easier method. Here we are not gonna find out roots of this solution, because its not asked. Easily we can solve it by Coefficient Rule.

Coefficient Rule :- It states that if we are given the ratios of two values, we cab simply apply its coefficient in the values and use it.

Then, according to the question :-

~ For the value of α + β :-

 \: \\ \qquad \: \large{\sf{\Longrightarrow \: \: \: \alpha \: + \: \beta \: \: = \: \: \bf{\dfrac{(-b)}{a}}}}

 \: \\ \qquad \: \large{\sf{\Longrightarrow \: \: \: \alpha \: + \: \beta \: \: = \: \: \bf{\dfrac{-(-5)}{4}}}}

 \: \\ \: \large{\boxed{\sf{\alpha \: + \: \beta \: \: = \: \: \bf{\dfrac{5}{4}}}}}

~ For the value of αβ :-

 \: \\ \qquad \: \large{\sf{\Longrightarrow \: \: \: \alpha \: \times \: \beta \: \: = \: \: \bf{\dfrac{(c)}{a}}}}

 \: \\ \qquad \: \large{\sf{\Longrightarrow \: \: \: \alpha \: \times \: \beta \: \: = \: \: \bf{\dfrac{(1)}{4}}}}

 \: \\ \: \large{\boxed{\sf{\alpha \: \times \: \beta \: \: = \: \: \bf{\dfrac{1}{4}}}}}

~ For the value of α²β + β²α :-

 \: \\ \qquad \: \large{\rm{\Longrightarrow \: \: \alpha^{2} \beta \: \: + \: \: \beta^{2} \alpha \: \: = \: \: \bf{\alpha \beta(\alpha \: + \: \beta)}}}

Here we have just shortened and simplified the equation.

Now we already have the value of αβ and α + β.

Then, applying those, we get

 \: \\ \qquad \: \large{\rm{\Longrightarrow \: \: \: \alpha^{2} \beta \: \: + \: \: \beta^{2} \alpha \: \: = \: \: \bf{\dfrac{1}{4} \: \times \dfrac{5}{4} \: \: = \: \: \underline{\underline{\dfrac{5}{16}}}}}}

 \: \\ \: \large{\boxed{\sf{\alpha^{2} \beta \: \: + \: \: \beta^{2} \alpha\: \: = \: \: \bf{\dfrac{5}{16}}}}}

 \: \\ \large{\underline{\underline{\sf{\leadsto \: \: Hence, \: the \: value \: of \: \alpha^{2} \beta \: \: + \: \: \beta^{2} \alpha \: \: is \: \: \: \boxed{\bf{\dfrac{5}{16}}}}}}}

_______________________________________________

 \: \: \qquad \large{\underline{\underline{\rm{\mapsto \: \: \: Let's \: know \: more \: :-}}}}

Polynomials are the statements written which shows that the value of x is rhe solution of that statement.

Quadratic Equations are the equations formed using Variable and Constant terms but the degree variable term shows the number of zeroes of it. For quadratic equation that degree is 2.

Linear Equation is the equation formed using constant and variable terms but these terms are of single degrees.

* Note :- Here I have solved this using direct application method. You can solve this question by finding out the zeroes also. For this type of answer, please refer to answer given by @itzVanquisher.


EliteSoul: Great
Answered by EliteSoul
17

Correct question :

10. If a and B are zeroes of a quadratic polynomial P(x) = 4x² - 5x + 1 . Find the value of a²ß+aß²​

Given :

10. If α and β are zeroes of a quadratic polynomial P(x) = 4x² - 5x + 1.

To find :

Find the value of α²β + αβ²

Solution :

Given polynomial :

⇒ P(x) = 4x² - 5x + 1

⇒ 4x² - 5x + 1 = 0

⇒ 4x² - 4x - x + 1 = 0

⇒ 4x(x - 1) - 1(x - 1) = 0

⇒ (4x - 1) (x - 1) = 0

⇒ 4x = 1  or,  x = 1

x = 1/4  or,  x = 1

∴ α = 1/4 and β = 1

Now putting values,

⇒ α²β + αβ²

⇒ (1/4)² * 1 + 1/4 * 1²

⇒ 1/16 + 1/4

⇒ (1 + 4)/16

5/16

Therefore,

Value of α²β + αβ² = 5/16

Similar questions