10 points
==========
will mark as brainliest
===========
please help.
Attachments:
Answers
Answered by
9
Hey Mate !
Here is your solution :
Note : I am not able to type the sign that has used, so I'm using α.
Given,
p = sin α + cos α
q = sec α + cosec α
Now,
R.H.S = 2p
Plug the value of p,
R.H.S = 2 ( sin α + cos α )
And,
L.H.S = q ( p² - 1 )
Substitute the value of q and p ,
= ( sec α + cosec α ) [ ( sin α + cos α )² - 1]
= ( sec α + cosec α ) ( sin² α + cos² α + 2 × sin α × cos α - 1 )
Using identity :
[ sin² α + cos² α = 1 ]
= ( sec α + cosec α ) ( 1 + 2 × sin α × cos α - 1 )
= ( sec α + cosec α ) ( 2 × sin α × cos α )
= 2 ( sec α + cosec α ) ( sin α × cos α )
Using identity :
=> sec α = 1 / cos α
=> cosec α = 1 / sin α
= 2 × [ ( 1/cos α ) + ( 1 / sin α ) ] ( sin α × cos α )
= 2 ( sin α × cos α ) [ ( sin α + cos α ) / ( sin α × cos α ]
=> 2 ( sin α + cos α ) = R.H.S
☆ Proved ☆
=============================
Hope it helps !! ^_^
Here is your solution :
Note : I am not able to type the sign that has used, so I'm using α.
Given,
p = sin α + cos α
q = sec α + cosec α
Now,
R.H.S = 2p
Plug the value of p,
R.H.S = 2 ( sin α + cos α )
And,
L.H.S = q ( p² - 1 )
Substitute the value of q and p ,
= ( sec α + cosec α ) [ ( sin α + cos α )² - 1]
= ( sec α + cosec α ) ( sin² α + cos² α + 2 × sin α × cos α - 1 )
Using identity :
[ sin² α + cos² α = 1 ]
= ( sec α + cosec α ) ( 1 + 2 × sin α × cos α - 1 )
= ( sec α + cosec α ) ( 2 × sin α × cos α )
= 2 ( sec α + cosec α ) ( sin α × cos α )
Using identity :
=> sec α = 1 / cos α
=> cosec α = 1 / sin α
= 2 × [ ( 1/cos α ) + ( 1 / sin α ) ] ( sin α × cos α )
= 2 ( sin α × cos α ) [ ( sin α + cos α ) / ( sin α × cos α ]
=> 2 ( sin α + cos α ) = R.H.S
☆ Proved ☆
=============================
Hope it helps !! ^_^
lavnish123:
thanks dude.
Similar questions