Math, asked by wwwayushnegi4715, 10 months ago

10 theta upon 1 minus cot theta + cot theta upon 1 minus 10 theta equal to 1 + sec theta cos theta​

Answers

Answered by Anonymous
110

AnswEr :

• To Prove :

\dfrac{ \tan(A) }{1 - \cot(A) } + \dfrac{ \cot(A) }{1 - \tan(A) } = 1 + \sec(A) \csc(A)

• Proof :

\leadsto\dfrac{ \tan(A) }{1 - \cot(A) } + \dfrac{ \cot(A) }{1 - \tan(A) }

⠀⠀⠀⠀⋆ tan(A) = sin(A) / cos(A)

⠀⠀⠀⠀⋆ cot(A) = cos(A) / sin(A)

\leadsto\dfrac{ \frac{ \sin(A) }{ \cos(A) } }{1 - \frac{ \cos(A) }{ \sin(A) } } + \dfrac{ \frac{ \cos(A) }{ \sin(A) } }{1 - \frac{ \sin(A) }{ \cos(A) } }

\leadsto\dfrac{ \frac{ \sin(A) }{ \cos(A) } }{\frac{ \sin(A) - \cos(A) }{ \sin(A) } } + \dfrac{ \frac{ \cos(A) }{ \sin(A) } }{\frac{ \cos(A) - \sin(A) }{ \cos(A) } }

\leadsto\dfrac{ \sin^{2} (A) }{ \cos(A)( \sin(A) - \cos(A)) } + \dfrac{ \cos ^{2} (A) }{ \sin(A)( \cos(A) - \sin(A) )}

⠀⠀⠀⠀⋆ Taking Negative Common

\leadsto\dfrac{ \sin^{2} (A) }{ \cos(A)( \sin(A) - \cos(A)) } - \dfrac{ \cos ^{2} (A) }{ \sin(A)( \sin(A) - \cos(A) )}

\leadsto \dfrac{1}{( \sin(A) - \cos(A))} \bigg(\dfrac{ \sin^{2} (A) }{ \cos(A) } - \dfrac{ \cos ^{2} (A) }{ \sin(A)} \bigg)

\leadsto \dfrac{1}{( \sin(A) - \cos(A))} \bigg(\dfrac{ \sin^{3} (A) - \cos ^{3} (A) }{ \cos(A)\sin(A) } \bigg)

⠀⠀⠀⠀⋆ (a³ - b³) = (a - b)(a² + b² + ab)

\leadsto \dfrac{1}{ \cancel{( \sin(A) - \cos(A))}} \times \dfrac{ \cancel{(\sin(A) - \cos(A))}(\sin^{2} (A) + \cos ^{2} (A) + \sin(A) \cos(A)) }{ \cos(A)\sin(A) }

\leadsto \dfrac{(\sin^{2} (A) + \cos ^{2} (A) + \sin(A) \cos(A)) }{ \cos(A)\sin(A) }

⠀⠀⠀⠀⋆ (sin²A + cos²A) = 1

\leadsto \dfrac{(1 + \sin(A) \cos(A)) }{ \cos(A)\sin(A) }

\leadsto \dfrac{1}{ \cos(A)\sin(A) } + \cancel\dfrac{\sin(A) \cos(A) }{ \cos(A)\sin(A) }

\leadsto \dfrac{1}{ \cos(A)\sin(A) } + 1

⠀⠀⠀⠀⋆ 1 / cos(A) = sec(A)

⠀⠀⠀⠀⋆ 1 / sin(A) = cosec(A)

\leadsto \large1 + \sec(A) \csc(A)

\therefore \boxed{ \rm \dfrac{ \tan(A) }{1 - \cot(A) } + \dfrac{ \cot(A) }{1 - \tan(A) } = 1 + \sec(A) \csc(A) }

◑ make sure to visit my same answer :

https://brainly.in/question/13795282

Answered by sargamyt
0

Step-by-step explanation:

mark me as brainlist that is your answer

Similar questions