Math, asked by khardesantosh80, 4 months ago

13. If m times the mth term of an A.P. is eqaul to n times nth term then show that the
(m + n) term of the A.P. is zero.​

Answers

Answered by sreeh123flyback
1

Step-by-step explanation:

this is the answer okkkkkkkkkkkkkkkkkkkkk

Attachments:
Answered by mathdude500
3

\begin{gathered}\begin{gathered}\bf Given -  \begin{cases} &\sf{ma_m \:  =  \: na_n}  \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf  To \:  show :-  \begin{cases} &\sf{a_{(m + n)} = 0}  \end{cases}\end{gathered}\end{gathered}

Cᴀʟᴄᴜʟᴀᴛɪᴏɴ :

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}★

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

Tʜᴜs,

↝ mᵗʰ term is,

\tt \:   \longrightarrow \: \begin{gathered}\bf{a_m\:=\:a\:+\:(m\:-\:1)\:d} \\ \end{gathered}

Aɢᴀɪɴ,

↝ nᵗʰ term is,

\tt \:   \longrightarrow \: \begin{gathered}\bf{a_n\:=\:a\:+\:(n\:-\:1)\:d} \\ \end{gathered}

Nᴏᴡ, according to the statement,

\tt \:  \longrightarrow \: m \: a_m \:  = \:  n \: a_n

\tt \:  \longrightarrow \: m \: (a + (m - 1)d) = n(a + (n - 1)d)

\tt \:  \longrightarrow \: m(a + md - d) = n(a + nd - d)

\tt \:  \longrightarrow \: am + d {m}^{2}  - dm = an +  {dn}^{2}  - dn

\tt \:  \longrightarrow \: an +  {dm}^{2}  - dm - an -  {dn}^{2}  + dn = 0

\tt \:  \longrightarrow \: (am - an) + (d {m}^{2}  -  {dn}^{2} ) + (dn - dm) = 0

\tt \:  \longrightarrow \: a(m - n) + d( {m}^{2}  -  {n}^{2} ) - d(m - n) = 0

\tt \:  \longrightarrow \: a(m - n) + d(m - n)(m + n) - d(m - n) = 0

\tt \:  \longrightarrow \: (m  - n)\bigg( a + (m + n)d - d\bigg) = 0

\tt\implies \:a + d(m + n) - d = 0 \:  \: as \: m \:  \ne \: n

\tt \:  \longrightarrow \: a \:  +  \: (m + n - 1)d = 0

\tt\implies \:a_{m \:  + \:  n} \:  =  \: 0

\large{\boxed{\boxed{\bf{Hence, Proved}}}}

Similar questions