14. Without actually calculating the cubes, find the value of each of the following:
(1) (-12) + (7) +(5)3
(ii) (28)+(-15) + (-13)3
Answers
Answer:
1. 120
2. - 2184
Step-by-step explanation:
PLEASE MARK AS BRAINLIEST???
Answer:
i) -1260
ii) 16380
Step-by-step explanation:
(i) (-12)³ + (7)³ + (5)³
We know that
x³ + y³ + z³ - 3xyz = (x + y + z) (x² + y² + z² - xy - yz - zx)
So, x³ + y³ +z³ = 3xyz + (x + y + z) (x² +y² + z² - xy - yz - zx)
Putting x = -12, y = 7, z = 5
(-12)³ + (7)³ + (5)³
= 3 (-12) (7) (5)
+ ( -12 + 7 + 5) ( (-12)² + (7)²+ (5)² - (-12) (7) - (7) (5) - (5) (-12) )
= 3 (-12) (7) (5) + (0) ( (-12)² + (7)² + (5)²- (-12) (7) - (7) (5) - (5) (-12)
= 3 (-12) (7) (5)
= -1260
(ii) (28)³ + (-15)³ + (-13)³
We know that
x³ + y³ + z³ - 3xyz = (x + y + z) (x² + y² + z² – xy – yz - zx)
So, x³ + y³ + z³ = 3xyz + (x + y + z) (x² + y² + z² - xy - yz - zx)
Putting x = 28, y = -15, z = -13
(28)³ + (-15)³ + (-13)³
= 3 (28) (-15) (-13)
+ (28 - 15 -13) ( (28)² + (-15)² + (-13)² + (28) (-15) + (-15) (-13) + (-13) (28) )
= 3 (28) (-15) (-13) + 0
= 16380
hope this helps,
please mark brainliest, thanks!