Physics, asked by sushmasingh8989, 5 months ago

16. An object of mass 100 kg is accelerated uniformly from a velocity<br />of 5 ms-1 to 8 ms- in 6 s. Calculate the initial and final<br />momentum of the object. Also, find the magnitude of the force<br />exerted on the object.​

Answers

Answered by itzcutiemisty
31

Explanation:

Given:

  • Mass (m) = 100 kg
  • Initial velocity (u) = 5 m/s
  • Final velocity (v) = 8 m/s
  • Time (t) = 6 seconds

To find:

  • Initial momentum = ?
  • Final momentum = ?
  • Force = ?

Solution:

We know, \blue{\tt{momentum(P)\:=\:mass(m)\:\times \:velocity(v)}}.

So, the initial momentum = mu.

Where, m = mass

\:\:\:\:\:\:\:\:\:\: u = initial velocity.

\:

\Longrightarrow Initial momentum = 100 × 5

\:

\Longrightarrow\:\sf{\underline{\underline{\therefore\:Initial\:momentum\:=\:500\:kg\:m/s.}}}

\:

Now, final momentum = mass × final velocity.

\:

\Longrightarrow Final momentum = 100 × 8

\:

\Longrightarrow\:\sf{\underline{\underline{\therefore\:Final\:momentum\:=\:800\:kg\:m/s.}}}

\:

We know that \pink{\sf{Force(F)\:=\:mass(m)\:\times\:acceleration(a).}} We need to find acceleration for this.

We remember that \sf{\underline{acceleration\:=\:\left(\dfrac{v\:-\:u}{t}\right)}}

\longrightarrow\:\sf{a\:=\:\left(\dfrac{8\:-\:5}{6}\right)}

\:

\longrightarrow\:\sf{a\:=\:\cancel{\dfrac{3}{6}}}

\:

Hence, acceleration = 0.5 m/s².

Now, put the values in the formula for force.

\:

\Longrightarrow F = 100 × 0.5

\:

\Longrightarrow\:\sf{\underline{\underline{\therefore\:Force\:=\:50\:Newton.}}}

Answered by shaktisrivastava1234
24

  \Huge\mid{\overline { \underline{\sf{Answer}}}} \mid

_____________________________________________________________________________________________

  \large  \underline{\underline{\red{\frak{Given::}}}}

 \mapsto \sf{Mass(m) \:  of  \: object=100kg}

 \sf{ \mapsto{Initial  \: velocity (u)  \: of \:  object=5m {s}^{ - 1} }}

 \sf{ \mapsto{Final  \: velocity (v)  \: of \:  object=8m {s}^{ - 1} }}

  \sf{\mapsto{Time(t)  \: taken \:  to  \: change  \: in  \: velocity=6  \: second}}

 { \large  {\underline{\underline{\pink{\frak{To  \: find::}}}}}}

 \sf{ \leadsto{Initial  \: momentum(P{_1})  \: of \:  object. }}

 \sf{ \leadsto{Final  \: momentum(P{_2})  \: of \:  object. }}

 \sf{ \leadsto{Force  \: required \: to \: change \: in \: velocity  \: of \:  object. }}

 { \large  {\underline{\underline{\blue{\frak{Formula  \: required::}}}}}}

  \bullet{\fbox{ \bf{Momentum(P) \:  of \:  object =mass(m)\:of\:object×velocity(v)\:of\:object}}} \bullet

 \bullet{ \boxed{ \bf{Acceleration(a)= \frac{Final  \: velocity (v)-Initial  \: velocity(u)}{Time (t) \: taken \:  to  \: change  \: in  \: velocity} }}} \bullet

 { \large  {\underline{\underline{\green{\frak{According \:  to \:  Question::}}}}}}

 \sf{ \rightarrow{Initial  \: momentum(P{_1})  \: of \:  object =  mass(m) \: of \: object× initial \: velocity(u) \: of \: object}}

 \sf{ \implies{Initial  \: momentum(P{_1})  \: of \:  object = 100kg \times 5m {s}^{ - 1} }}

 \sf{ \implies{Initial  \: momentum(P{_1})  \: of \:  object = 500kg•m {s}^{ - 1}  }}

_____________________________________________________________________________

 \sf{ \rightarrow{Final  \: momentum(P{_2})  \: of \:  object =  mass(m) \: of \: object× final \: velocity(v) \: of \: object}}

 \sf{ \implies{Final  \: momentum(P{_2})  \: of \:  object = 100kg \times 8m {s}^{ - 1} }}

 \sf{ \implies{Final  \: momentum(P{_2})  \: of \:  object = 800kg•m {s}^{ - 1}  }}

______________________________________________________________________________

 \sf{ \rightarrow{Force(F)  \: required \: to \: change \: in \: velocity  \: of \:  object = mass(m) \: of \: object  \times acceleration(a) \: of \: object}}

 \sf{ \implies{Force(F)  \: required \: to \: change \: in \: velocity  \: of \:  object = mass(m) \: of \: object  \times  \frac{final \: velocity(v) \: of \: object - initial \: velocity(u) \: of \: object}{time(t)} }}

 \sf{ \implies{Force(F)  \: required \: to \: change \: in \: velocity  \: of \:  object = 100kg  \times  \frac{8m {s}^{ - 1} - 5m {s}^{ - 1}  }{6sec} }}

 \sf{ \implies{Force(F)  \: required \: to \: change \: in \: velocity  \: of \:  object = 100kg  \times  \frac{ 3m{s}^{ - 1}   }{6sec} }}

 \sf{ \implies{Force(F)  \: required \: to \: change \: in \: velocity  \: of \:  object = 100kg  \times  0.5m {s}^{ - 2} }}

 \sf{ \implies{Force(F)  \: required \: to \: change \: in \: velocity  \: of \:  object = 50N }}

_____________________________________________________________________________

___________________________________________________________________________________________

Similar questions