16. Under what condition the point (x, y) lie at equidistant from
(7,1) and (3,-5)?
Answers
Answer: using distance formula
using distance formula→
using distance formula→ (x−7)
using distance formula→ (x−7) 2
using distance formula→ (x−7) 2 +(y−1)
using distance formula→ (x−7) 2 +(y−1) 2
using distance formula→ (x−7) 2 +(y−1) 2
using distance formula→ (x−7) 2 +(y−1) 2
using distance formula→ (x−7) 2 +(y−1) 2 =
using distance formula→ (x−7) 2 +(y−1) 2 = (x−3)
using distance formula→ (x−7) 2 +(y−1) 2 = (x−3) 2
using distance formula→ (x−7) 2 +(y−1) 2 = (x−3) 2 +(y−5)
using distance formula→ (x−7) 2 +(y−1) 2 = (x−3) 2 +(y−5) 2
using distance formula→ (x−7) 2 +(y−1) 2 = (x−3) 2 +(y−5) 2
using distance formula→ (x−7) 2 +(y−1) 2 = (x−3) 2 +(y−5) 2
using distance formula→ (x−7) 2 +(y−1) 2 = (x−3) 2 +(y−5) 2
using distance formula→ (x−7) 2 +(y−1) 2 = (x−3) 2 +(y−5) 2 ⇒−14x+49−2y+1=−6x+9−10y+25
using distance formula→ (x−7) 2 +(y−1) 2 = (x−3) 2 +(y−5) 2 ⇒−14x+49−2y+1=−6x+9−10y+25⇒8x−8y=16
using distance formula→ (x−7) 2 +(y−1) 2 = (x−3) 2 +(y−5) 2 ⇒−14x+49−2y+1=−6x+9−10y+25⇒8x−8y=16⇒x−y=2⇒y=x−2
Answer:
Answer
→ using distance formula
→
(x−7)
2
+(y−1)
2
=
(x−3)
2
+(y−5)
2
⇒−14x+49−2y+1=−6x+9−10y+25
⇒8x−8y=16
⇒x−y=2⇒y=x−2