Math, asked by kunalsharma181p8bdpj, 11 months ago

18. Find a quadratic polynomial whose zeroes are:-
 \frac{2}{3} \:  and \:  -  \frac{1}{3}

Answers

Answered by gothwalshubham95
1

Answer:

9x^2 - 3x - 2 = 0

Step-by-step explanation:

P(x) = x^2 - (sum of zeroes/roots)x + (product of roots)

P(x) = x^2 - (2/3 -1/3)x + (2/3 X -1/3) = 0

Answered by Anonymous
22

\Large{\underline{\underline{\mathfrak{\orange{\sf{Question}}}}}}.

Find a quadratic polynomial whose zeroes are:-

 \frac{2}{3} \: and \: - \frac{1}{3}

\Large{\underline{\underline{\mathfrak{\orange{\sf{Answer}}}}}}.

Given

  • Zeroes of polynomial are  \frac{2}{3} \: and \: - \frac{1}{3}

Find

  • Equation of polynomial

\Large\underline{\underline{\mathfrak{\orange{\sf{Explanation}}}}}.

\bigstar\sf{\:Sum\:of\:zeroes\:=\:\dfrac{2}{3}+\dfrac{-1}{3}}

\mapsto\sf{\:Sum\:of\:zeroes\:=\:\dfrac{2-1}{3}}

\mapsto\pink{\sf{\:Sum\:of\:zeroes\:=\:\dfrac{1}{3}}}

\bigstar\sf{\:Product\:of\:zeroes\:=\:\dfrac{2}{3}\times\dfrac{-1}{3}}

\mapsto\pink{\sf{\:Product\:of\:zeroes\:=\:\dfrac{-2}{9}}}

We Know,

\green{\boxed{\boxed{\orange{\small{\sf{\:x^2-(Sum\:of\:zeroes)x+(product\:of\:zeroes)\:=\:0}}}}}}

\:\:\:\:\:\:\small\green{\sf{\:keep\:values}}

\mapsto\sf{\:x^2-(\dfrac{1}{3})x+(\dfrac{-2}{9})\:=\:0}

\mapsto\sf{\:9x^2-3x-2\:=\:0}

\Large\pink{\sf{\underbrace{Thus}}}

\LARGE\underline{\underline{\sf{\green{\:Required\:Equation}}}}

\mapsto\orange{\sf{\:9x^2-3x-2\:=\:0}}

Similar questions