Math, asked by rodeswarxaxa, 2 months ago

2√6-√5
-----------
3√5-2√6​

Answers

Answered by AnanyaSwami1
3

Answer:

\frac{2\sqrt{6}-\sqrt{5}  }{3\sqrt{5}-2\sqrt{6}  }=\frac{4\sqrt{30}+9}{21}

Step-by-step explanation:

\frac{2\sqrt{6}-\sqrt{5}  }{3\sqrt{5}-2\sqrt{6}  }

Rationalize the denominator by multiplying it by \frac{3\sqrt{5} +2\sqrt{6}}{3\sqrt{5} +2\sqrt{6}}

\frac{2\sqrt{6}-\sqrt{5}  }{3\sqrt{5}-2\sqrt{6}  } *\frac{3\sqrt{5} +2\sqrt{6}}{3\sqrt{5} +2\sqrt{6}}

by the formula x^{2} - y^{2} = (x+y)(x-y)

\frac{(2\sqrt{6}-\sqrt{5})*(3\sqrt{5} +2\sqrt{6})}{(3\sqrt{5})^{2} -(2\sqrt{6} )^{2} } = \frac{2\sqrt{6}*(3\sqrt{5}+2\sqrt{6}) - \sqrt{5}*(3\sqrt{5}+2\sqrt{6}) }{9*5-4*6}

=\frac{6\sqrt{5*6} +4\sqrt{6*6} - 3\sqrt{5*5} - 2\sqrt{5*6} } {21} =\frac{6\sqrt{30}-2\sqrt{30}+6*4-3*5  }{21} =\frac{4\sqrt{30}+9}{21}

HOPE IT HELPS please mark as brainliest thank and rate the answer.

THANK YOU

Similar questions