2^a=3^b=6^c prove that c=ab/a+b
Answers
Answered by
5
Let 2^a=3^b=6^c=K (K≠0)
2^a = K ⇒2 = K^1/a
3^b = K ⇒3 = K^1/b
6^c = K ⇒6 = K^1/c
We know that:
6 = 2 * 3
⇒ K^1/c = K^1/a * K^1/b
⇒ K^1/c = K^1/a+1/b
⇒ K^1/c = K^a+b/ab
⇒ 1/c = a+b/ab [∵ the bases are equal, equating them:]
⇒ c = ab/a+b
Similar questions