Math, asked by pannalasaicharan347, 3 months ago


2. i) Find the equation of the circle which passes through the point (0, -3) and the
intersects the circles x + y2 - 6x + 3y + 5 = 0 and x + y2 - x - 7y = 0 orthogonally
[May 2015TS, 2013)​

Answers

Answered by shreyansjain4
0

Answer:

We  know that the equation of circle passing through intersection of given circles is ⇒(x  

2

+y  

2

−2x−6y+6)+k(x  

2

+y  

2

+2x−6y)=0

⇒(1+k)x  

2

+(1+k)y  

2

+(−2+2k)x+(−6−6k)y+6=0

⇒(1+k)x  

2

+(1+k)y  

2

+2(k−1)x+2(−3−3k)y+6=0              ....(1)

⇒x  

2

+y  

2

+2(  

k+1

k−1

​  

)x+2(  

k+1

−3−3k

​  

)y+  

k+1

6

​  

=0

⇒x  

2

+y  

2

+2(  

k+1

k−1

​  

)x+2(−3)y+  

k+1

6

​  

=0

Given that this circle intersects x  

2

+y  

2

+4x+6y+4=0 orthogonally.

The condition or orthogonal intersection of 2 circles is 2(gg  

+ff  

)=c+c  

 

⇒2(  

k+1

k−1

​  

×2+(−3)(3))=4+  

k+1

6

​  

 

⇒  

k+1

2(k−1)

​  

−9=2+  

k+1

3

​  

 

⇒  

k+1

2(k−1)

​  

−11=  

k+1

3

​  

 

⇒2(k−1)−11(k+1)=3

On solving we get, k=  

9

16

​  

 

Substituting this value of k in (1) we get,

⇒25x  

2

+25y  

2

+14x−150y+54=0

Step-by-step explanation:

Similar questions