Math, asked by nagendrakumar0726, 9 months ago


2. The length of the sides of a triangle are in the ratio 4 : 5:6 and its perimeter is 150 em,
Find (i) the area of the triangle11) the height corresponding to the longest side,

Answers

Answered by Bᴇʏᴏɴᴅᴇʀ
48

Answer:-

Let us Consider that the sides of the Triangle are \bf{4x, 5x \: and \: 6x}.

Given:-

Perimeter of Triangle =\bf{150m}

Solution:-

\longrightarrow\sf 4x + 5x + 6x = 150

\longrightarrow\sf 15x = 150

\longrightarrow\sf x = \dfrac{150}{15}

\implies\bf{x \:=\: 10}

Sides of the Triangle:

\longrightarrow\sf 4x = 4(10)

\implies\bf{40}

\longrightarrow\sf 5x = 5(10)

\implies\bf{50}

\longrightarrow\sf 6x = 6(10)

\implies\bf{60}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Now,Using Heron's Formula:-

\large{\boxed{\bf{\sqrt{s(s\:-\:a) (s\:-\:b) (s\:-\:c)}}}}

\longrightarrow\sf s = \dfrac{a\:+\:b\;+\:c}{2}

\longrightarrow\sf s = \dfrac{150}{2}

\implies\bf{s = 75}

Here::

\bf{s \: = \: 75} \\ \bf{a \:=\: 40} \\ \bf{b\:=\: 50} \\ \bf{c\:=\: 60}

\longrightarrow\sf \sqrt{75(75 - 40) (75 - 50) (75 - 60)}

\longrightarrow\sf \sqrt{75(35) (25) (15)}

\longrightarrow\sf\sqrt{984375}

\longrightarrow\bf{992.15}

Area of Triangle is \bf{992 cm^2}

Now, Height corresponding to the longest side :

\longrightarrow\sf \dfrac{ 2 \times 992}{60}

\implies\large\bf{33.07 \:cm}

Hence,the Height corresponding to the longest side is 33.07 cm.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions