Math, asked by vanithajshettyvanith, 2 months ago

20. Solve by using quadratic formula : x2-3x+1=0.

Answers

Answered by iamsumanyes
6

Hey there here is your AnsweR,

\\\\

Appropriate Question :

\\

  • Solve by using quadratic formula : x²-3x+1=0.

\\\\

Required Solution :

\\

Solving by using Quadric formula :

\\

 ✰\:\: \tt \: x  ^ { 2  }  -3x+1=0 \\

All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.

\\

 :  \implies \tt \: x^{2}-3x+1=0  \\

This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -3 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.

\\

 :  \implies \tt \:  x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4}}{2} \\

Square -3.

\\

 :  \implies \tt \: x=\frac{-\left(-3\right)±\sqrt{9-4}}{2}  \\

The opposite of -3 is 3.

\\

 :  \implies \tt \:  x=\frac{3±\sqrt{5}}{2} \\

Now solve the equation x=\frac{3±\sqrt{5}}{2} when ± is plus. Add 3 to \sqrt{5}.

\\

 :  \implies \tt \:  x=\frac{\sqrt{5}+3}{2} \\

Now solve the equation x=\frac{3±\sqrt{5}}{2} when ± is minus. Subtract \sqrt{5} from 3.

\\

 :  \implies \tt \:  x=\frac{3-\sqrt{5}}{2} \\

The equation is now solved.

\\

 ✰ \:  \: \underline{ \boxed{ \frak{x=\frac{\sqrt{5}+3}{2}}}} \:  \:  ✰\\ ✰ \:  \:\underline{ \boxed{ \frak{x=\frac{3-\sqrt{5}}{2} }}} \:  \:  ✰

\\\\

Please mark my answer as brainliest answer.

Similar questions