Math, asked by kayasthjpn, 4 months ago

21.Two numbers are in the ratio 7: 5. If 6 is subtracted from each, the ratio becomes

4: 3. Find the numbers.​

Answers

Answered by Anonymous
15

Given:

Original ratio of the two numbers = 7:5

If 6 is subtracted from both the numbers then,

New ratio = 4:3

________________________

To find:

The numbers.

________________________

Solution:

\bigstar {\sf {\red {Let\ the\ first\ number\ be\ 7x.}}}

\bigstar {\sf {\red {Let\ the\ second\ number\ be\ 5x.}}}

________________________

So, equation formed is,

 \sf \: \dfrac{7x - 6}{5x - 6} =  \dfrac{4}{3}

\bigstar {\sf {\orange {Cross\ multiplication}}}

\implies \sf {3(7x-6) = 4(5x-6)}

\implies \sf {21x-18 = 20x-24}

\implies \sf {21x-20x = -24+18}

\boxed {\bf {\pink {x=-6}}}

________________________

Verification:

On substituting the value of x as (-6) in the equation,

\implies \sf \: \dfrac{7 \times ( - 6) - 6}{5 \times  ( - 6) - 6} = \dfrac{4}{3}

\implies \sf \: \dfrac{ - 42 - 6}{ - 30 - 6} =  \dfrac{4}{3}

 \implies \sf \: \dfrac{ - 48}{ - 36} =  \dfrac{4}{3}

\implies \sf \: \dfrac{4}{3} =  \dfrac{4}{3}

LHS = RHS

Hence Verified!

________________________

Final answer:

\bigstar {\sf {\purple {First\ number = 7x}}}

\sf \purple {= 7 \times (-6)}

\sf \purple {= -42}

\bigstar {\sf {\blue {Second\ number = 5x}}}

\sf \blue {= 5 \times (-6)}

\sf \blue {= -30}

The two numbers are -42 and -30.

Answered by CɛƖɛxtríα
138

_____________________________________

Given:

  • The original ratio of the numbers = 7:5
  • If six is subtracted from each of the numbers, the numbers will be in a ratio 4:3.

To do:

  • Find the numbers.

Solution:

Let, the first number be \sf 7x and and the second number be \sf 5x

We can form a equation;

\large\underline{\boxed{\tt{\purple{\frac{7x-6}{5x-6}=\frac{4}{3}}}}}

Now we have to do cross-multiplication to solve the equation.

\implies\Large{\mathrm{\frac{7x - 6}{5x - 6}  =  \frac{4}{3} }}

\implies{\mathrm {3(7x - 6) = 4(5x - 6)}}

\implies{\mathrm{ 21x - 18 = 20x  - 24}}

\implies{\mathrm{ 21x - 20x =  - 24 + 18}}

  • \large\underline{\boxed{\sf{\red{x=(-6)}}}}

Verification:

To verify, substitute -6 in place of 'x' in the equation formed.

\implies\Large{\mathrm{ \frac{7x - 6}{5x - 6}  =  \frac{4}{3} }}

\implies\Large{\mathrm{ \frac{7 \times ( - 6) - 6}{5 \times ( - 6) - 6}  =  \frac{4}{3}}}

\implies\Large{\mathrm{ \frac{ - 42 - 6}{ - 30 - 6}  =    \frac{4}{3}}}

\implies\Large{\mathrm{ \frac{ - 48}{ - 36}  =  \frac{4}{3}}}

\implies\Large{\mathrm{\frac{4}{3}  =  \frac{4}{3} }}

\bold{\implies L.H.S = R.H.S}

  • \large{\underline{\underline{\tt{\blue{Hence,\: verified\:!}}}}}

Answer:

  • The first number {\mathrm{(7x)}}:

\rightarrow{\bold{7\times-6}}

\rightarrow{\underline{\underline{\bold{\pink{-42}}}}}

  • The second number {\mathrm{(5x)}}:

\rightarrow{\bold{5\times-6}}

\rightarrow{\underline{\underline{\bold{\pink{-30}}}}}

____________________________________

Similar questions