Math, asked by anshika2000, 11 months ago

22. sec(7 - 4x) pls integrate it​

Answers

Answered by Anonymous
4

Answer:

\bold\red{-  \frac{1}{4}  ln( | \sec(7 - 4x)  +  \tan(7 - 4x) | )  + c}

Step-by-step explanation:

\int \sec(7 - 4x) dx

Let,

7 - 4x = t

Differentiate both sides,

we get,

 =  >  - 4 =  \frac{dt}{dx}  \\  \\  =  > dx =  -  \frac{dt}{4}

Substituting the value,

we get,

 = -  \frac{1}{4} \int \sec(t) dt

Now,

we know that,

\int \sec( x)dx  =   ln( | \sec(x) +  \tan(x)  | )

Therefore,

we get,

 =  -  \frac{1}{4}  ln( | \sec(t)  +  \tan(t) | )  + c

Putting the value of 't'

we get,

 =   \bold{-  \frac{1}{4}  ln( | \sec(7 - 4x)  +  \tan(7 - 4x) | )  + c}

Similar questions