Math, asked by anggadhanil22, 11 months ago

222.22+222.37+222.21

Answers

Answered by AbhijithPrakash
18

Answer:

\green{222.22+222.37+222.21=666.8}

Step-by-step explanation:

222.22+222.37+222.21

\gray{\mathrm{Write\:the\:numbers\:one\:under\:the\:other,\:line\:up\:the\:decimal\:points.}} \gray{\mathrm{Add\:trailing\:zeroes\:so\:the\:numbers\:have\:the\:same\:length.}}

\displaystyle\begin{matrix}\space\space&2&2&2&.&2&2\\ \space\space&2&2&2&.&3&7\\ +&2&2&2&.&2&1\end{matrix}

\gray{\mathrm{Add\:each\:column\:of\:digits,\:starting\:on\:the\:right\:and\:working\:left.}} \gray{\mathrm{If\:the\:sum\:of\:a\:column\:is\:more\:than\:ten,\:'carry'\:digits\:to\:the\:next\:column\:on\:the\:left.}}

\gray{\mathrm{Add\:the\:digits\:of\:the\:bolded\:column}:\quad \:2+7+1=10}

\gray{\begin{matrix}\space\space&2&2&2&.&2&\textbf{2}\\ \space\space&2&2&2&.&3&\textbf{7}\\ +&2&2&2&.&2&\textbf{1}\end{matrix}}

\gray{\mathrm{Carry\:}1\mathrm{\:to\:the\:column\:on\:the\:left\:and\:write\:}0\mathrm{\:in\:the\:bolded\:column}}

\displaystyle{\frac{\begin{matrix}\space\space&\space\space&\space\space&\space\space&\space\space&1&\textbf{\space\space}\\ \space\space&2&2&2&.&2&\textbf{2}\\ \space\space&2&2&2&.&3&\textbf{7}\\ +&2&2&2&.&2&\textbf{1}\end{matrix}}{\begin{matrix}\space\space&\space\space&\space\space&\space\space&\space\space&\space\space&\textbf{0}\end{matrix}}}

\gray{\mathrm{Add\:the\:digits\:of\:the\:bolded\:column}:\quad \:1+2+3+2=8}

\displaystyle\frac{\begin{matrix}\space\space&\space\space&\space\space&\space\space&\space\space&\textbf{1}&\space\space\\ \space\space&2&2&2&.&\textbf{2}&2\\ \space\space&2&2&2&.&\textbf{3}&7\\ +&2&2&2&.&\textbf{2}&1\end{matrix}}{\begin{matrix}\space\space&\space\space&\space\space&\space\space&\space\space&\textbf{8}&0\end{matrix}}

\gray{\mathrm{Place\:the\:decimal\:point\:in\:the\:answer\:directly\:below\:the\:decimal\:points\:in\:the\:terms}}

\displaystyle\frac{\begin{matrix}\space\space&\space\space&\space\space&\space\space&\textbf{\space\space}&1&\space\space\\ \space\space&2&2&2&\textbf{.}&2&2\\ \space\space&2&2&2&\textbf{.}&3&7\\ +&2&2&2&\textbf{.}&2&1\end{matrix}}{\begin{matrix}\space\space&\space\space&\space\space&\space\space&\textbf{.}&8&0\end{matrix}}

\gray{\mathrm{Add\:the\:digits\:of\:the\:bolded\:column}:\quad \:2+2+2=6}

\displaystyle\frac{\begin{matrix}\space\space&\space\space&\space\space&\textbf{\space\space}&\space\space&1&\space\space\\ \space\space&2&2&\textbf{2}&.&2&2\\ \space\space&2&2&\textbf{2}&.&3&7\\ +&2&2&\textbf{2}&.&2&1\end{matrix}}{\begin{matrix}\space\space&\space\space&\space\space&\textbf{6}&.&8&0\end{matrix}}

\gray{\mathrm{Add\:the\:digits\:of\:the\:bolded\:column}:\quad \:2+2+2=6}

\displaystyle\frac{\begin{matrix}\space\space&\space\space&\textbf{\space\space}&\space\space&\space\space&1&\space\space\\ \space\space&2&\textbf{2}&2&.&2&2\\ \space\space&2&\textbf{2}&2&.&3&7\\ +&2&\textbf{2}&2&.&2&1\end{matrix}}{\begin{matrix}\space\space&\space\space&\textbf{6}&6&.&8&0\end{matrix}}

\gray{\mathrm{Add\:the\:digits\:of\:the\:bolded\:column}:\quad \:2+2+2=6}

\displaystyle\frac{\begin{matrix}\space\space&\textbf{\space\space}&\space\space&\space\space&\space\space&1&\space\space\\ \space\space&\textbf{2}&2&2&.&2&2\\ \space\space&\textbf{2}&2&2&.&3&7\\ +&\textbf{2}&2&2&.&2&1\end{matrix}}{\begin{matrix}\space\space&\textbf{6}&6&6&.&8&0\end{matrix}}

=666.8

Similar questions