CBSE BOARD XII, asked by NewBornTigerYT, 11 months ago

25. Find the sum of the first twelve terms of the series
(3³ - 2³) + (5³-4³) + (7³-6³) + .... to n terms.



\red{Explanation required}

Answers

Answered by rishu6845
5

Answer:

\boxed{\huge{\pink{8280}}}

Explanation:

\bold{\underline{\orange{Given }}}\longrightarrow\\ ( {3}^{3}  -  {2}^{3} ) + ( {5}^{3}  -  {4}^{3} ) + (  {7}^{3}  -  {6}^{3} ) + ...........

\bold{\underline{\red{To \: find }}}\longrightarrow\\ sum \: of \: first \: 12 \: terms

\bold{\underline{\green{Concept \: used}}}/longrightarrow

 (1)\sum{n} =  \dfrac{n(n + 1)}{2}  \\ 2)  \:  \: \sum{ {n}^{2} } =  \dfrac{n(n + 1)(2n + 1)}{6}  \\ 3)  \:  \: \sum{ {n}^{3} } =  \dfrac{ {n}^{2}(n + 1) ^{2}  }{4}  \\ 4)if \: we \: take \: first \:  member \: of \: each \: term \:  \\ 3 \: 5 \: 7....... \\ which \: make \: an \: ap \: whose \\ nth \: term \:  = 2n + 1 \\ similarly \: if \: we \: take \: second \: member \\ 2 \: 4 \: 6.... \\ it \: is \: also \: an \: ap \:  \\ whose \: nth \: term \: is \:  equal \: to \:  2n

\bold{\underline{\blue{Solution}}}\longrightarrow \\ let \: nth \: term \: of \: given \: series \: is \: a(n) \\ a(n) =  {(2n + 1)}^{3}  -  {(2n)}^{3}  \\  =  {(2n)}^{3}  + (1) ^{3}  + 3 {(2n)}^{2} (1) + 3(1)^{2} (2n) - 8 {n}^{3}  \\  = 8 {n}^{3}  + 1 + 12 {n}^{2}  + 6n - 8 {n}^{3}  \\  = 12 {n}^{2}  + 6n + 1

 \sum a(n) =  \sum(12 {n}^{2}  + 6n + 1)

 =12  \sum {n}^{2}  + 6 \sum \: n +  \sum \: 1

 = 12 \dfrac{n(n + 1)(2n + 1)}{6}  + 6 \dfrac{n(n + 1)}{2}  + n

 = 2n(n + 1) \: (2n + 1) + 3n(n + 1) + n

 = n \: (n + 1)(2(2n + 1) + 3) + n

 = n(n + 1)(4n + 2 + 3) + n \\  = n(n + 1)(4n + 5) + n

now \:for \:  sum \: of \: 12 \: terms \\ putting \: n = 12 \: we \: get

 = 12(12 + 1)(4 \times 12 + 5) + 12 \\  = 12 \times 13(48 + 5) + 12 \\  = 12 \times 13 \times 53 + 12 \\  = 8268 + 12 \\  = 8280

Similar questions