2sin4tita.cos2tita Express the following as a sum or difference of two angle
Answers
Answered by
0
Answer:
Sin6x + Sin2x
Sin(4x + 2x) + Sin(4x-2x)
Step-by-step explanation:
2Sin(4x).Cos(2x)
Using Sin(A+b) = SinACosB + CosASinB
Sin(4x) = Sin(3x+x) = Sin3xCosx + Cos3xSinx
Cos(A-B) = CosACosB + sinASinB
Cos2x = Cos(3x-x) = Cos3xCosx + Sin3xSinx
2Sin(4x).Cos(2x)
= 2 (Sin3xCosx + Cos3xSinx)(Cos3xCosx + Sin3xSinx)
= 2Sin3xCos3xCos²x + 2Sin²3xCosxSinx + 2Cos²3xSinxCosx + 2Cos3xSin3xSin²x)
= 2Sin3xCos3x(Cos²x + Sin²x) + 2CosxSinx(Sin²3x + Cos²3x)
Using Cos²x + Sin²x = 1 and Sin²3x + Cos²3x = 1
= 2Sin3xCos3x + 2CosxSinx
Using Sin2x = 2SinxCosx
= Sin6x + Sin2x
= Sin(4x + 2x) + Sin(4x-2x)
Answered by
0
Answer:
Step-by-step explanation:
Formula used:
Now,
Similar questions
Hindi,
7 months ago
Computer Science,
1 year ago
Computer Science,
1 year ago
Math,
1 year ago
Math,
1 year ago