Math, asked by hihihi56, 1 year ago

2x+5y=12
4x+3y=-4

do it using substitution method take y common from eq 2​

Answers

Answered by aglet2169
1

Answer:

2x + 5y = 12...eq.1

4x+ 3y = -4.....eq.2

taking value of x from eq.1

2x = 12-5y

x = (12-5y)/2

putting value in eq.2

4 x (12-5y)/2 +3y = -4

24-10y+3y = -4

24-7y = -4

7y = 28

y = 4

putting value in eq.1

2x + 5x4 = 12

2x = -8

x = -4

hope it helps

mark as brainliest.

Answered by ItzAditt007
1

{\huge{\pink{\underline{\underline{\purple{\mathbb{\bold{\mathcal{AnSwEr..}}}}}}}}}

{\large{\blue{\bold{\underline{Given:-}}}}}

1)

\implies2x + 5y = 12 \\  \\ \implies5y = 12 - 2x \\  \\ \implies \: y =  \frac{12 - 2x}{5}

2)

\implies4x  + 3y =  - 4

{\large{\blue{\bold{\underline{Now,}}}}}

▪︎ By putting the value of y in eq(2) we get:-

\implies4x + 3( \frac{12 - 2x}{5}) =  - 4 \\  \\  \implies4x + \frac{36 - 6x}{5}  =  - 4 \\  \\ \implies \frac{20x - 6x + 36}{5}  =  - 4 \\  \\ \implies14x + 36 = 5( - 4) \\  \\ \implies14x + 36 =  - 20 \\  \\ \implies14x =  - 20 - 36 \\  \\ \implies14x =  - 56 \\  \\ \implies \: x =  \frac{ - 56}{14}  \\  \\ \implies \: x =  - 4

{\large{\blue{\bold{\underline{Again,}}}}}

▪︎ Putting the value of x in the value of y we get,

\implies \: y =  \frac{12 - 2x}{5}  \\  \\ \implies \: y =  \frac{12 - 2( - 4)}{5}  \\  \\ \implies \: y =  \frac{12 - ( - 8)}{5}  \\  \\ \implies \: y =  \frac{12 + 8}{5}  \\  \\ \implies \: y =   \frac{20}{5}  \\  \\ \implies \: y = 4

Therefore the required values of x and y are -4 and 4 respectively.

Similar questions