Math, asked by Dhananchakma2943, 1 year ago

2X2-11x+5=0by completing square methid

Answers

Answered by kumargoransh34
1

Answer:

Step-by-step explanation:

Hope it helps

Please make it brainliest

Attachments:
Answered by Anonymous
22

Solution :-

Given Polynomial

→ 2x² - 11x + 5 = 0

Now in first step we will divide both sides by 2

 \rightarrow \dfrac{2x^2 - 11x + 5}{2} = \dfrac{0}{2}

 \rightarrow x^2 - \dfrac{11}{2}x + \dfrac{5}{2} = 0

Now we will send the constant term to right side :-

 \rightarrow x^2 - \dfrac{11}{2}x =  \dfrac{-5}{2}

Now we will add \bold{\underline{(\frac{11}{4})^2}} to both sides

 \rightarrow x^2 - \dfrac{11}{2}x +\left(\dfrac{11}{4}\right)^2 =  \dfrac{-5}{2} + \left(\dfrac{11}{4}\right)^2

 \rightarrow x^2 - \dfrac{11}{2}x +  \dfrac{121}{16}  =\dfrac{-5}{2}+\dfrac{121}{16}

 \rightarrow \left( x - \dfrac{11}{4}\right)^2 = \dfrac{121 - 40}{16}

 \rightarrow \left( x - \dfrac{11}{4}\right)^2 = \dfrac{81}{16}

Taking square root both sides :-

 \rightarrow \left( x - \dfrac{11}{4}\right) = \pm\dfrac{9}{4}

 \rightarrow x = \pm \dfrac{9}{4} + \dfrac{11}{4}

 \rightarrow x = \dfrac{11 - 9}{4} \: and \: \dfrac{11 + 9}{4}

 \rightarrow x = \dfrac{2}{4} \: and \: \dfrac{20}{4}

So Value of x

 \huge{\boxed{\sf{ = \dfrac{1}{2} \: and \: 5 }}}

Similar questions