Math, asked by namratakaushal0, 10 months ago

2xsquare +x-4=0 by completing square method ​

Answers

Answered by akanshaagrwal23
3

Step-by-step explanation:

NSWER

The given quadratic equation is

2x

2

+x−4=0

⇒x

2

+

2

x

−2=0

⇒x

2

+

2

x

=2

On adding both sides

16

1

we get

x

2

+

2

x

+

16

1

=2+

16

1

⇒(x+

4

1

)

2

=

16

33

⇒x+

4

1

4

33

⇒x=±

4

33

4

1

⇒x=

4

−1−

33

,

4

−1+

33

Answered by silentlover45
2

 \large\underline\mathfrak{Given:-}

  • \mathbb{equation:-} \: \: {2x}^{2} \: + \: x \: - \: 4 \: \: = \: \: 0

 \large\underline\mathfrak{To \: \: find:-}

  • \mathbb{ find \: \: the \: \: value \: \: of \: \: x \: \: by \: \: completing \: \: the \: \: square \: \: method.}

 \huge\underline\mathfrak{Solutions:-}

  •  \mathbb{equation:-} \: \: {2x}^{2} \: + \: x \: - \: 4 \: \: = \: \: 0

\leadsto \: {2x}^{2} \: + \: x \: - \: 4 \: \: = \: \: 0

\leadsto \: \frac{{2x}^{2}}{2} \: + \: \frac{x}{2} \: - \: \frac{4}{2} \: \: = \: \: \frac{0}{2}

\leadsto \: {x}^{2} \: + \: \frac{x}{2} \: - \: {2} \: \: = \: \: {0}

\underline\mathbb{write \: \: the \: \: equation \: \: in \: \: the \: \: form:-}

 \: \: \: \: \: \: \large\fbox{{{x}^{2} \: + \: {bx} \: \: = \: \: {c}}}

 \: \: \: \: \: \leadsto \: {x}^{2} \: + \: \frac{x}{2} \: \: = \: \: {2}

\underline\mathbb{Add \: \: {{(\frac{1}{2})}^{2}} \: \: on \: \: both \: \: sides.}

 \: \: \: \: \: \leadsto \: {x}^{2} \: + \: \frac{x}{2} \: + \: \frac{1}{16} \: \: = \: \: {2} \: + \: \frac{1}{16}

 \: \: \: \: \: \leadsto \: {({x} \: + \: \frac{1}{4})}^{2} \: \: = \: \: {2} \: + \: \frac{1}{16}

 \: \: \: \: \: \leadsto \: {({x} \: + \: \frac{1}{4})}^{2} \: \: = \: \: \frac{33}{16}

 \: \: \: \: \: \leadsto \: {x} \: + \: \frac{1}{4} \: \: = \: \: \sqrt{\frac{33}{16}}

 \: \: \: \: \: \leadsto \: {x} \: + \: \frac{1}{4} \: \: = \: \: {\frac{\sqrt33}{16}}

 \: \: \: \: \: \leadsto \: {x} \: = \: \: {\frac{\pm\sqrt{33}}{16}} \: - \: \frac{1}{4}

 \: \: \: \: \: \leadsto \: {x} \: = \: \: {\frac{\sqrt{33} \: - \: 1}{4}} \: \: \: Or \: \: \: {x} \: = \: \: {\frac{{ \: - \: (\sqrt{33} \: + \: 1)}}{4}}

 \underline\mathbb{So,}

\: \: \: \: \: the \: \: roots \: \: of \: \: the \: \: given \: \: equation \: \: are:-

 \: \: \: \: \: \: \large\fbox{ {x} \: = \: \: {\frac{\sqrt{33} \: - \: 1}{4}} \: \: \: Or \: \: \: {x} \: = \: \: {\frac{{ \: - \: (\sqrt{33} \: + \: 1)}}{4}}}

______________________________________

Similar questions