Math, asked by shauryasingh38, 9 months ago

(3/2)^-1 × (3/2)^-1 × (3/2)^-1​

Answers

Answered by jagan8982
0

Answer:

so x - 2 = 2^(2/3) + 2^(1/3)

=(x-2)^3 = [2^(2/3)+2^(1/3)]^3

use (a-b)^3= a^3 - b^3 - 3ab(a-b)

and (a+b)^3= a^3 + b^3 + 3ab(a+b) formulae.

or x^3 - 8 - 6x(x-2) = 2^2 + 2^1 + 3*[2^{(2/3)+(1/3)}[2^(2/3)+2^(1/3)

or x^3 - 8 - 6x^2 + 12x = 4 + 2 + 6(x-2)

or x^3 - 8 -6x^2 + 12x = 6 + 6x - 12

or x^3 - 6x^2 +6x = 2

Answered by Anonymous
27

\green{\bold{\underline{ ☆ UPSC-ASPIRANT ☆} }}

\red{\bold{\underline{\underline{QUESTION:-}}}}

(3/2)^-1 × (3/2)^-1 × (3/2)^-1

\huge\bigstar\huge\tt\underline\red{ᴀɴsᴡᴇʀ }\bigstar

➜   { (\frac{3}{2}) }^{ - 1}  \times  { (\frac{3}{2} )}^{ - 1}  \times  {( \frac{3}{2} )}^{ - 1}

➜ { (\frac{2}{3}) }^{1}  \times  { (\frac{2}{3} )}^{1}  \times  { (\frac{2}{3} )}^{1}

➜ \frac{2}{3}  \times  \frac{2}{3}  \times  \frac{2}{3}  =  \frac{8}{27}

Here is your answer^^^^

Hope it helps you..!!!

_________________

Thankyou:)

Similar questions