Math, asked by anshnagpal9906, 11 months ago

3.27^x+1 + 27.3^3x ÷ 3.3^3x+2 - 1/3.27^x+1

Answers

Answered by slicergiza
15

Answer:

3^{3x+4} - 3^{3x+2}+1

Step-by-step explanation:

Given expression,

3\times 27^{x+1} +\frac{27\times 3^{3x}}{3\times 3^{3x+2}} - \frac{1}{3}\times 27^{x+1}

3\times (3^3)^{x+1} + \frac{3^3\times 3^{3x}}{3\times 3^{3x+2}} - \frac{1}{3}\times (3^3)^{x+1}

Using (a^m)^n = a^{mn} and a^m.a^n = a^{m+n}

3\times 3^{3x+3} + \frac{3^{3x+3}}{3^{3x+3}}- \frac{1}{3}\times 3^{3x+3}

3^{3x+4} + \frac{3^{3x+3}}{3^{3x+3}}- 3^{3x+3-1}

3^{3x+4} +1- 3^{3x+2}

3^{3x+4} - 3^{3x+2}+1

Answered by FelisFelis
12

The required answer is 6.

Step-by-step explanation:

Consider the provided expression.

\frac{\left3\cdot 27^{x+1}\:+\:27\cdot 3^{3x}\:\right}{3\cdot \:3^{3x+2}-\:\frac{1}{3}\cdot \:27^{x+1}}

Now use the exponent rule: \:a^b\cdot \:a^c=a^{b+c}

\frac{\left3\cdot 27^{x}\cdot 27\:+ 27\cdot 3^{3x}\:\right}{3\cdot 9\cdot \:3^{3x}-\:\frac{1}{3}\cdot27\cdot \:27^{x}}

\frac{\left81\cdot 27^{x}\:+ 27\cdot 3^{3x}\:\right}{27\cdot \:3^{3x}-\:9\cdot \:27^{x}}

\frac{\left81\cdot 3^{3x}\:+ 27\cdot 3^{3x}\:\right}{27\cdot \:3^{3x}-\:9\cdot \:3^{3x}}

\frac{3^{3x}(\left81\:+ 27)}{3^{3x}(27-\:9)}

\frac{108}{18}

6

Hence, the required answer is 6.

#Learn More #Laws of Exponents

https://brainly.in/question/4148276 by @Dfgh4

https://brainly.in/question/25724 by @BrainlyRacer

Similar questions