Math, asked by DonaSharmahidanz, 1 year ago

(3+2i)(3-2i)
Solve the above expression

Ch - Complex Numbers
Class 11

Answers

Answered by CoolestCat015
48

Answer:

(3+2i)(3-2i) = 13

Step-by-step explanation:

We have been given the statement:-

(3+2i)(3-2i)

Using the identity:-

(a+b)(a-b) = a^{2} - b^{2}

= (3+2i)(3-2i) = (3)^{2} - (2i)^{2}

= (3)^{2} - (2i)^{2}

= 9 - 4i^{2}

Value of i^{2} = -1

= 9 - 4(-1)

= 9 + 4

= 13

So, the answer is 13 !


DonaSharmahidanz: Thanks
CoolestCat015: ^-^
AdorableAstronaut: Awesome re ❤
CoolestCat015: Just like you :o ❤
Answered by AbhijithPrakash
20

Answer:  

\left(3+2i\right)\left(3-2i\right)=13  

Step-by-step explanation:  

We are given a complex expression;

\left(3+2i\right)\left(3-2i\right)  

 

\mathrm{Let's\:apply\:complex\:arithmetic\:rule}:\quad \left(a+bi\right)\left(a-bi\right)=a^2+b^2  

a=3,\:b=2  

=3^2+2^2  

 

\mathrm{Refine}  

=13  

Similar questions