Math, asked by mggg, 1 year ago


3 - 4 sin square theta upon cos square theta equals to 3 minus 10 squared theta prove that ​

Answers

Answered by muskanc918
79

\huge{\pink{\underline{\underline{QUESTION-}}}}

\bf{\purple{\implies\:\frac{3}{ \ { \cos}^{2} \theta  }  -  \frac{4  \: { \sin }^{2} \theta }{ { \cos }^{2}  \theta}= 3 - {tan}^{2}  \theta }}

\huge{\pink{\underline{\underline{SOLUTION-}}}}

\huge{\underline{\underline{L.H.S.-}}}

\mathrm{ =  \frac{3}{ \ { \cos}^{2} \theta  }  -  \frac{4  \: { \sin }^{2} \theta }{ { \cos }^{2}  \theta}}

\mathrm{=  3 \:  {sec}^{2}  \theta - 4 \:  {tan}^{2}  \theta}

\mathsf{\red{ (Since,\:\implies \frac{1}{ { \cos}^{2}  \theta}  =  { \sec}^{2}  \theta\:and\:\frac{\: { \sin }^{2} \theta }{ { \cos }^{2}  \theta}={\tan}^{2}\theta)}}

\mathrm {=  3 \:  {sec}^{2}  \theta - 3 \:  {tan}^{2}  \theta    - { \tan }^{2} \theta}

\mathrm{= 3({sec}^{2}  \theta -   {tan}^{2}  \theta) - { \tan }^{2} \theta}

\mathrm{= 3 \times 1 -  {tan}^{2}  \theta}

\mathrm{= 3 - {tan}^{2}  \theta}

\mathcal{\implies\:L.H.S.=R.H.S.}

\huge{\texttt{Hence\:\:Proved}}


Anonymous: Nice solution :)
muskanc918: thanks @shivam
Anonymous: ooo
Answered by Anonymous
29

 \huge{ \purple{ \underline{ \underline{QUESTION-}}}}

 \large \pink{=  >   \frac{3}{ {cos}^{2}\theta }  - \frac{4 {  \sin }^{2}\theta }{ {cos }^{2} \theta} =  \: 3 \:  -  {tan\theta \: }^{2}   }

 \huge{ \purple{ \underline{ \underline{SOLUTION-}}}}

\huge\underline\red{R.H.S\:-}

\large\pink{=> 3\: - \frac{{sin}^{2}\theta}{{Cos}^{2}\theta}}

 \large\pink{=> \frac{3{cos}^{2}\theta\: -{sin}^{2}\theta}{{cos}^2}\theta}

 \large\pink{=>\frac{3(1-{sin}^{2}\theta)-{sin}^{2}\theta}{{cos}^{2}}}

\large\pink{=> \frac{3-4{sin}^{2}}{{cos}^{2}}}

\large\purple{=>\frac{3}{{cos}^{2}}-\frac{4{sin}^{2}}{{cos}^{2}}}

\huge{L.H.S= R.H.S}

\huge\red{PROVED}


muskanc918: wrong answer
Anonymous: completed
siddhartharao77: RHS should be 3 - tan^2theta
siddhartharao77: Ok. It is correct.
Anonymous: sir @siddhart
Similar questions