Math, asked by manojpandit1171973, 9 months ago

3.
Show that if the diagonals of a quadrilateral bisect each other at right angles, then it
is a rhombus. ​

Answers

Answered by gaurav042005
15

Answer:

Step-by-step explanation:

Let ABCD be a quadrilateral whose diagonals bisect each other at right angles.

Given,

OA = OC, OB = OD and ∠AOB = ∠BOC = ∠OCD = ∠ODA = 90°

To show,

ABCD is parallelogram and AB = BC = CD = AD

Proof,

In ΔAOB and ΔCOB,

OA = OC (Given)

∠AOB = ∠COB (Opposite sides of a parallelogram are equal)

OB = OB (Common)

Therefore, ΔAOB ≅ ΔCOB by SAS congruence condition.

Thus, AB = BC (by CPCT)

Similarly we can prove,

AB = BC = CD = AD

Opposites sides of a quadrilateral are equal hence ABCD is a parallelogram.

Thus, ABCD is rhombus as it is a parallelogram whose diagonals intersect at right angle.

hope it may be helpful

mark as brainliest plzzz!!!!

Similar questions