Math, asked by rudrajoshi4321, 8 hours ago

302.Show that : 4 sinthetha cos³thetha - 4 costhetha sin³theta = sin 4thetha

​spammers will be reported

Answers

Answered by Shinzo16
4

*•.¸♡ ⒶⓃⓈⓌⒺⓇ *•.¸♡

attachment \: provided \: above

Hopefully it will help you!!

Attachments:
Answered by brokendreams
0

Step-by-step explanation:

Given : We have a trigonometric equation .

To prove :  4sin\theta*cos^{3} \theta-4cos\theta*sin^{3} \theta=sin(4\theta)

Trigonometric identities used :

  1. cos^{2}\theta-sin^2\theta=cos(2\theta)
  2. 2*sin\theta*cos\theta=sin(2\theta)
  • Proof :

We have to prove ;

⇒  4sin\theta*cos^{3} \theta-4cos\theta*sin^{3} \theta=sin(4\theta)

Let's take L.H.S separately,

⇒  4sin\theta*cos^{3} \theta-4cos\theta*sin^{3} \theta

taking 4*sin\theta*cos\theta common from L.H.S,

⇒  4*sin\theta*cos\theta[cos^2\theta-sin^2\theta]

by using identity (1),

⇒  4*sin\theta*cos\theta *cos(2\theta)

rearranging equation so that we can apply identity (2),

⇒  2*(2*sin\theta*cos\theta )*cos(2\theta)

⇒  2*sin(2\theta)*cos(2\theta)

again using identity (2) we get L.H.S as,

⇒  sin(4\theta)

Hence proved that L.H.S =R.H.S or  4sin\theta*cos^{3} \theta-4cos\theta*sin^{3} \theta=sin(4\theta) .

Similar questions