Math, asked by upasana2021, 3 months ago

36. If K = (seca + tan a)(sec 3 + tan 3)(sec y +tan y)= (seca - tan a)(sec 3 -- tan 8) (secay - tan).
then K =
a) 0
b) +1
c) +2
d) 23

Answers

Answered by gulabshani12
1

Answer:

Solution: Given: (secA + tanA)(secB + tanB)(secC + tan C) = (secA - tanA)(secB - tanB)(secC - tanC) Multiplying both sides with by LHS i.e "(secA + tanA)(secB + tanB)(secC + tan C) " ⇒ (secA + tanA)(secB + tanB)(secC + tan C)(secA + tanA)(secB + tanB)(secC + tan C) = (secA - tanA)(secB - tanB)(secC - tanC)(secA + tanA)(secB + tanB)(secC + tan C) ⇒ (secA + tanA)2(secB + tanB)2(secC + tan C)2 = (sec2A - tan2A)(sec2B - tan2B)(sec2C - tan2C) [∵ (a+b)(a-b) = a2 - b2 ] ⇒ [(secA + tanA)(secB + tanB)(secC + tan C)]2 = (1)(1)(1) = 1 [∵ sec2A - tan2A = 1 ] ∴ (secA + tanA)(secB + tanB)(secC + tan C) = ± 1 Similarly Multiplying both sides with by RHS i.e " (secA - tanA)(secB - tanB)(secC - tanC) " we will get ⇒ (sec2A - tan2A)(sec2B - tan2B)(sec2C - tan2C) = (secA - tanA)2(secB - tanB)2(secC - tan C)2 ⇒ (1)(1)(1) = [(secA - tanA)(secB - tanB)(secC - tan C)]2 [∵ sec2A - tan2A = 1 ] ⇒ [(secA - tanA)(secB - tanB)(secC - tan C)]2 = 1 ∴ (secA – tanA)(secB – tanB)(secC – tan C) = ± 1

Similar questions