Math, asked by Alwayshelpme, 7 months ago

(3a – 1/b)^3 – 6(3a – 1/b) + 9 + (c + 1/b – 2a) (3a – 1/b – 3) Solve this​

Answers

Answered by Anonymous
72

Answer:

Correct Question:

( 3a -  \frac{1}{b} ) {}^{3}  - 6(3a -  \frac{1}{b} ) + 9 + \\  (c +  \frac{1}{b} - 2a)(3a  -  \frac{1}{b} - 3)

 = (3a -  \frac{1}{b} ) {}^{2}  - 2 \times 3(3a -  \frac{1}{b} ) \\ + 3 {}^{2}  + (c +  \frac{1}{b}  - 2a)(3a -  \frac{1}{b}  - 3) \\  \\

 = (3a -  \frac{1}{b}  - 3) (3a -  \frac{b}{3}  - 3) + \\  (c +  \frac{1}{b}  - 2a)(3a -  \frac{1}{b}  - 3)

 = (3a -  \frac{1}{b}  - 3)(3a -  \frac{1}{b}  - 3 + c +  \frac{1}{b}  - 2a)

 = (3a -  \frac{1}{b}  - 3)(a + c - 3)

Hence, (3a – 1/b – 3)(a + c – 3) is the solution.

Some algebraic identities

→ (a + b)^2 = a^2 + 2ab + b^2

→ (a – b)^2 = a^2 – 2ab + b^2

→ a^2 – b^2 = (a + b) (a – b)

→ (a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca

→ (a + b – c)^2 = a^2 + b^2 + c^2 + 2ab – 2bc – 2ca

→ (a – b – c)^2 = a^2 + b^2 + c^2 – 2ab + 2bc – 2ca

→ (a + b)^3 = a^3 + b^3 + 3ab(a + b)

→ (a – b)^3 = a^3 – b^3 – 3ab(a – b)

→ (a^3 + b^3) = (a + b) (a^2 – ab + b^2)

→ (a^3 – b^3) = (a – b) (a^2 + ab + b^2)

Similar questions