Math, asked by HelpingHand12345, 11 months ago

(3a/5 + 2b/3) (3a/5-2b/3) =?
(A) 3a²/5-2b²/3
(B) 9a²/5-4b²/9
(C) 9a²/25-4b²/9
(D) 9a²/25-4b²/3

Answers

Answered by pulakmath007
2

SOLUTION

TO CHOOSE THE CORRECT OPTION

 \displaystyle \sf{ \bigg( \frac{3a}{5}   +  \frac{2b}{3} \bigg)\bigg( \frac{3a}{5}    -   \frac{2b}{3} \bigg)}

(A) 3a²/5-2b²/3

(B) 9a²/5-4b²/9

(C) 9a²/25-4b²/9

(D) 9a²/25-4b²/3

FORMULA TO BE IMPLEMENTED

We are aware of the identity that

 \sf{ {a}^{2} -  {b}^{2}  = (a + b)(a - b) }

EVALUATION

 \displaystyle \sf{ \bigg( \frac{3a}{5}   +  \frac{2b}{3} \bigg)\bigg( \frac{3a}{5}    -   \frac{2b}{3} \bigg)}

 \displaystyle \sf{  = {\bigg( \frac{3a}{5} \bigg)}^{2} -  {\bigg( \frac{2b}{3} \bigg)}^{2} } \:  \: (by \: above \: identity)

 \displaystyle \sf{  =  \frac{9 {a}^{2} }{25}  -  \frac{4 {b}^{2} }{9} }

FINAL ANSWER

Hence the correct option is

 \displaystyle \sf{ (c) \:  \:   \frac{9 {a}^{2} }{25}  -  \frac{4 {b}^{2} }{9} }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. to verify algebraic identity

a2-b2=(a+b)(a-b)

https://brainly.in/question/10726280

2. divide : (4x²- 100) ÷ 6(x+5)

https://brainly.in/question/15559404

Answered by riteshverma8886
1

Step-by-step explanation:

9a²/25 -4b²/9 (ans by *Ritesh Verma*

Similar questions