(3t + 1)/16 - (2t - 3)/7 = (t+3)/8 + (3t - 1)/14 Solve the equation
bast:
how
Answers
Answered by
366
given,
(3t + 1)/16 - (2t - 3)/7 = (t+3)/8 + (3t - 1)/14
⇒ 7(3t-1) - 16(2t-3) = 14(t+3) +8(3t-1)
16 × 7 14 × 8
⇒21t + 7 -32 +48 = 14t +42+ 24t -8
112 112
⇒21t - 32t -14t -24t = -48-7+42-8
⇒ -49 t = - 21
⇒t = 21/ 49
⇒ t = 3/7
(3t + 1)/16 - (2t - 3)/7 = (t+3)/8 + (3t - 1)/14
⇒ 7(3t-1) - 16(2t-3) = 14(t+3) +8(3t-1)
16 × 7 14 × 8
⇒21t + 7 -32 +48 = 14t +42+ 24t -8
112 112
⇒21t - 32t -14t -24t = -48-7+42-8
⇒ -49 t = - 21
⇒t = 21/ 49
⇒ t = 3/7
Answered by
43
Answer:
Step-by-step explanation:
given,
(3t + 1)/16 - (2t - 3)/7 = (t+3)/8 + (3t - 1)/14
⇒ 7(3t-1) - 16(2t-3) = 14(t+3) +8(3t-1)
16 × 7 14 × 8
⇒21t + 7 -32 +48 = 14t +42+ 24t -8
112 112
⇒21t - 32t -14t -24t = -48-7+42-8
⇒ -49 t = - 21
⇒t = 21/ 49
⇒ t = 3/7
hence proved
Similar questions