Math, asked by aradhya2542, 11 months ago

(4
1. If A = 0
Lo
0
4
0
0
0 then find the value of adj Al.
4]​

Attachments:

Answers

Answered by FuzzieGirl
7

Answer:

so, here's your answer....

I solved it :-)

please, mark my answer brainliest & rate 5 stars too

Attachments:
Answered by shadowsabers03
5

Given matrix is,

\mathrm{A=\left[\begin{array}{ccc}4&0&0\\0&4&0\\0&0&4\end{array}\right]}

Taking its cofactor matrix,

\left|\begin{array}{cc}4&0\\0&4\end{array}\right|=16\quad;\quad-\left|\begin{array}{cc}0&0\\0&4\end{array}\right|=0\quad;\quad\left|\begin{array}{cc}0&4\\0&0\end{array}\right|=0

-\left|\begin{array}{cc}0&0\\0&4\end{array}\right|=0\quad;\quad\left|\begin{array}{cc}4&0\\0&4\end{array}\right|=16\quad;\quad-\left|\begin{array}{cc}4&0\\0&0\end{array}\right|=0

\left|\begin{array}{cc}0&0\\4&0\end{array}\right|=0\quad;\quad-\left|\begin{array}{cc}4&0\\0&0\end{array}\right|=0\quad;\quad\left|\begin{array}{cc}4&0\\0&4\end{array}\right|=16

So the cofactor matrix will be,

\left[\begin{array}{ccc}16&0&0\\0&16&0\\0&0&16\end{array}\right]

We know the transpose of this one is the adjugate of A. So,

\mathrm{adj(A)=\left[\begin{array}{ccc}16&0&0\\0&16&0\\0&0&16\end{array}\right]}

Well, the same.

Now we have to find the determinant of this one, which is asked!

So,

\mathrm{|adj(A)|=16\left|\begin{array}{cc}16&0\\0&16\end{array}\right|-0\left|\begin{array}{cc}0&0\\0&16\end{array}\right|+0\left|\begin{array}{cc}0&16\\0&0\end{array}\right|=16^3=}\ \mathbf{4096}

I guess this would be the answer, but I got a short method now from this!

\boxed{\begin{minipage}{11.4cm}If a matrix $\mathrm{A=nI}$ where $\mathrm{n}\in\mathbb{R}$ and $\mathrm{I}$ is the identity matrix,\\\\then $\mathbf{|A|=n^3\quad\&\quad adj(A)=n^2I}$\\\\So $\mathbf{|adj(A)|=(n^2)^3=n^6}$\end{minipage}}

We were actually given \mathrm{A=4I}.

Hence we could say that \mathrm{|adj(A)|=4^6=}\ \mathbf{4096}.

Similar questions