Math, asked by kiranlata143sweetu, 1 year ago

4√3+5√2 /√ 48+√18 rationalize the denominator

Answers

Answered by ishitamogha21
1
hope this answer will help you.
Attachments:

pala24: hi
Answered by GalacticCluster
3

Answer:

 \\  \sf \:  \frac{4 \sqrt{3}  + 5 \sqrt{2} }{ \sqrt{2 \times 2 \times 2 \times 2 \times 3} +  \sqrt{3 \times 3 \times 2}  }  \\  \\  \\  \implies \sf \:  \frac{4 \sqrt{3}  + 5 \sqrt{2} }{4 \sqrt{3} + 3 \sqrt{2}  }  \\  \\

RF = 4√3 - 3√2

\\

 \large{ \underline{ \mathrm{ \green{multiply \:  \: and \:  \: divide \:  \: by \:  \: Rf \:  \: }}}} \\  \\  \\ \implies \sf \:   \frac{4 \sqrt{3} + 5 \sqrt{2}  }{4 \sqrt{3} + 3 \sqrt{2}  }  \times  \frac{4 \sqrt{3}  - 3 \sqrt{2} }{4 \sqrt{3} - 3 \sqrt{2}  }  \\  \\  \\  \implies \sf \:  \frac{4 \sqrt{3} \:  ( \: 4 \sqrt{3} - 3 \sqrt{2} ) + 5 \sqrt{2} \: ( \: 4 \sqrt{3}   - 3 \sqrt{2} ) }{(4 \sqrt{3}) {}^{2} - (3 \sqrt{2}  ) {}^{2}  }  \\  \\  \\  \implies \sf \:  \frac{48 - 12 \sqrt{6}  + 20 \sqrt{6} - 30 }{48 - 18}  \\  \\  \\  \implies \sf \:  \frac{48 - 30 - 12 \sqrt{6}  + 20 \sqrt{6} }{30}  \\  \\  \\  \implies \sf \:  \frac{18  + 8 \sqrt{6} }{30}  \\  \\  \\  \implies \sf \blue{ \frac{9 + 4 \sqrt{6} }{15} } \\  \\

Similar questions