4. If z = 3 – 4i, then the value of expression z4
– 3z3
+ 3z2 +
99z -95 is equal to
Answers
Complex Numbers
To remember.
- i = √(- 1)
- i² = - 1
- i³ = - i
- i⁴ = 1
Given. z = 3 - 4i
To find. the value of z⁴ - 3z³ + 3z² + 99z - 95
Solution.
Given, z = 3 - 4i
Then z⁴ = (3 - 4i)⁴
= 3⁴ - 4 (3³) (4i) + 6 (3²) (4i)² - 4 (3¹) (4i)³ + (4i)⁴
= 81 - 4 (27) (4i) + 6 (9) (16i²) - 4 (3) (64i³) + 256i⁴
= 81 - 432i + 864i² - 768i³ + 256i⁴
= 81 - 432i - 864 + 768i + 256
= - 527 + 336i
And z³ = (3 - 4i)³
= 3³ - 3 (3²) (4i) + 3 (3¹) (4i)² - (4i)³
= 27 - 3 (9) (4i) + 4 (3) (16i²) - 64i³
= 27 - 108i + 192i² - 64i³
= 27 - 108i - 192 + 64i
= - 165 - 44i
Also z² = (3 - 4i)²
= 3² - 2 (3) (4i) + (4i)²
= 9 - 24i + 16i²
= 9 - 24i - 16
= - 7 - 24i
∴ z⁴ - 3z³ + 3z² + 99z - 95
= - 527 + 336i - 3 (- 165 - 44i) + 3 (- 7 - 24i) + 99 (3 - 4i) - 95
= - 527 + 336i + 495 + 132i - 21 - 72i + 297 - 396i - 95
= 149
Answer. The value of z⁴ - 3z³ + 3z² + 99z - 95 is 149.