Math, asked by ghostop023, 5 months ago

4. Prove that:

(a) sin A = 3sin
(A/3)-
4sin^3
(A/3)​

Answers

Answered by hotcupid16
1

\red\bigstar\:\:{\boxed{\boxed{\bf{\color{coral}Centripetal\:acceleration\:\atop{\color{coral}remains \:unchanged\:}}}}} \\

\Large{\underline{\underline{\bf{\color{cyan}EXPLANATION}}}} \\

\bf\blue{We\:know\:that} \\

\pink\bigstar\:\:\bf\green{Centripetal\:acceleration\:(a_c)\:=\:{\omega}^2\:{r}} \\

\bf{\color{olive}Where,} \\

ω = Angular velocity

:\implies\:\:\bf{a_c\:=\:\omega\:.\:\omega{r}} \\

\bf\purple{As,} \\

\longmapsto\:\:\bf\red{v\:=\:\omega{r}\:} \\

\bf\pink{Where,} \\

v = Orbital speed

r = radius of orbit

\bf\green{So,} \\

:\implies\:\:\bf{a_c\:=\:\omega\:v}--(1) \\

\bf\red{According \:to\:question,} \\

\checkmark\:\:\bf{v\:\longrightarrow\:v'\:=\:2v\:} \\

\checkmark\:\:\bf{\omega\:\longrightarrow\:{\omega}'\:=\:\dfrac{\omega}{2}\:} \\

\bf\orange{Hence,} \\

:\implies\:\:\bf{a'_c\:=\:{\omega}'\:v'} \\

:\implies\:\:\bf{a'_c\:=\:\dfrac{\omega}{2}\times{2v}\:} \\

:\implies\:\:\bf{a'_c\:=\:{\omega}\:v\:} \\

:\implies\:\:\bf{\color{peru}a'_c\:=\:a_c\:}\:[from\:equ^n(1)] \\

\Large\bf\purple{Therefore,} \\

☆ New centripetal acceleration is equal to the initial centripetal acceleration.

\Large\bf\red{So,} \\

✔ Centripetal acceleration is unchanged.

Answered by hadeessuhail
1

Step-by-step explanation:

V= orbital apeed

R= radius of orbit

Similar questions