4. Use Euclid’s division lemma to show that the square of any positive integer is either of the form 3m or 3m + 1 for some integer m.
Answers
Let any positive integer be a then,
Case 1 : When a = 3q
→ a = 3q
→ a² = (3q)²
→ a² = 9q²
→ a² = 3(3q²)
→ a² = 3m ; where 3q² = m.
Case 2 : When a = 3q + 1
→ a² = (3q + 1)²
→ a² = 9q² + 6q + 1
→ a² = 3(3q² + 2q) + 1
→ a² = 3m + 1 ; where m = 3q² + 2q
Case 3 : When a = 3q + 2
→ a² = 9q² + 12q + 8
→ a² = 3(3q² + 4q + 2) + 2
→ a² = 3m + 2 ; where m = 3q² + 4q + 2
∴ Square of any positive integer by Euclids lemma is in form of 3m, 3m + 1 and 3m + 2.
Q.E.D
Solution:-
Let "a" be any positive Integer and b=3.
By Euclid Division Lemma,
The Positive Value of "r" can be 0, 1 and 2.
Hence,
The Positive Value of "a" be ( 3b ), ( 3b + 1) & (3b + 2).
Case |,
=) a = 3b
Squaring on both the sides.
=) a² = (3b)²
=) a² = 9b²
=) a² = 3( 3b²)
Let (a² = x) and (3b² = m)
=) x = 3m
Case ||,
=) a = (3b + 1)
Squaring on both the sides.
=) a² = ( 3b +1)²
=) a² = 9b² + 1 + 6b
=) a² = 3( 3b² + 2b) + 1
Taking ( a² = x) and ( 3b² + 2b = m)
=) x = 3m + 1.
Case |||,
=) a = ( 3b +2)
Squaring on both the sides.
=) a² = ( 3b + 2)²
=) a²= 9b² + 4 + 12b
=) a² = 9b² + 12b + 3 + 1
=) a² = 3( 3b² + 4b + 1) +1
Taking (a² = x) and ( 3b² + 4b +1 = m)
=) x = 3m + 1.
From Case (1), (2) and (3).
Square of any Positive Integer is of the form either 3m or 3m+1.