Math, asked by sanskrutikhalikar, 1 month ago

49x-57y=172, 57x-49y=252​

Answers

Answered by SparklingThunder
10

Step-by-step explanation:

 \sf \purple{ \clubs \:  Given :} \\  \bigg \lgroup { 49x-57y=172 }\bigg \rgroup \\\bigg \lgroup{   57x-49y=252}\bigg \rgroup \\ \sf \purple{ \clubs \: To \:  find  :} \\ \dag \sf \:  Value  \: of \:  x  \: and \:  y  \: . \\ \sf \purple{ \clubs \: Solution  :} \\ \sf By \:  using  \: substitution \:  method \\  \sf \: 49x -57y = 172   \longrightarrow (1)\\ \sf 49x = 172 + 57y \\ \sf x =  \frac{172  + 57y}{49} \longrightarrow (2) \\ \sf \: 57x-49y=252 \longrightarrow \:Given   \\ \sf \: Putting \:  value \:  from \:  (2) \: in \: above \: equation \\  \sf 57(\frac{172  + 57y}{49}) - 49y = 252 \\  \sf \:  \frac{9804 + 3249y}{49}  - 49y = 252 \\  \sf \:  \frac{9804 + 3249y - 2401y}{49}  = 252 \\  \sf \: 9804 + 848y = 49 \times 252 \\  \sf \: 9804 + 848y = 12348 \\  \sf \: 848y = 12348 - 9804 \\  \sf \: 848y = 2544 \\  \sf \: y =  \frac{2544}{848}  \\  \boxed{ \sf \: y = 3} \\  \sf \: Putting \:  value  \: of \:  y  \: i  n \:  equation \: (2) \\  \sf \: x =  \frac{172  + 57 \times 3}{49} \\ \sf x =  \frac{172 + 171}{49}  \\  \sf \: x =  \frac{343}{49}  \\  \boxed{ \sf \: x \:  = 7} \\  \sf \: Which \:  is  \: the \:  required \\  \sf \: Answer \: .

Answered by anitagatte3
3

Answer:

49x - 57y = 172

57x - 49y = 252

Adding 49x - 57y = 172 and 57x - 49y = 252

49x + 57x - 57y - 49y = 172 + 252

= 106x - 106y = 424

= x - y = 4

Subtract ,

49x + 57x - 57y - ( -49y ) = 252 - 172

= -8x - 8y = -80

= -x+y = 10

Adding

x - y = 4

x + y = 10

= 2x = 14

= x= 7

Putting the value of x = 7 in 10 we get

7 + y = 10

= y = 10 - 7

= y = 3

Thus , ( x , y ) = ( 7 , 3 )

Hope it will help you

Please make my answer as brainliest

Similar questions