Math, asked by sujatakumaridolly, 1 year ago

4x^2 + 4bx -(a^2- b^2)= 0. Solve by completing the square method.

Answers

Answered by Anonymous
5

Solution :-

4 {x}^{2}  + 4bx - ( {a}^{2}  -  {b}^{2} ) = 0 \\  \\  \\

 \implies 4 {x}^{2}  + 4bx  =  {a}^{2}  -  {b}^{2}   \\  \\

Dividing throughout by '4'

 \implies  \dfrac{4 {x}^{2} }{4}   +  \dfrac{4bx}{4} =   \dfrac{ {a}^{2}  -  {b}^{2} }{4}  \\  \\   \\

 \implies   {x}^{2}    +  bx =   \dfrac{ {a}^{2}  -  {b}^{2} }{4}  \\  \\   \\

 \implies   {x}^{2}    + 2 (x) \bigg( \dfrac{b}{2} \bigg)  =   \dfrac{ {a}^{2}  -  {b}^{2} }{4}  \\  \\   \\

Adding ( b/2 )² on both sides

 \implies   {x}^{2}    + 2 (x) \bigg( \dfrac{b}{2} \bigg) + \bigg( \dfrac{b}{2} \bigg)^{2}  =   \dfrac{ {a}^{2}  -  {b}^{2} }{4}   + \bigg( \dfrac{b}{2} \bigg)^{2}  \\  \\

 \implies  \bigg(x +  \dfrac{b}{2} \bigg)^{2}  =   \dfrac{ {a}^{2}  -  {b}^{2} }{4}   +  \dfrac{ {b}^{2} }{ {2}^{2} }   \\  \\  \\

[ Because a² + 2ab + b² = 2ab ]

 \implies  \bigg(x +  \dfrac{b}{2} \bigg)^{2}  =   \dfrac{ {a}^{2}  -  {b}^{2} }{4}   +  \dfrac{ {b}^{2} }{4}   \\  \\  \\

 \implies  \bigg(x +  \dfrac{b}{2} \bigg)^{2}  =   \dfrac{ {a}^{2}  -  {b}^{2}  +  {b}^{2} }{4}   \\  \\  \\

 \implies  \bigg(x +  \dfrac{b}{2} \bigg)^{2}  =   \dfrac{ {a}^{2} }{4}   \\  \\

Taking square root on both sides

 \implies x +  \dfrac{b}{2}   =     \pm \sqrt{ \dfrac{ {a}^{2} }{4}}   \\  \\   \\

 \implies x +  \dfrac{b}{2}   =     \pm  \dfrac{ a }{2}  \\  \\   \\

 \implies x +  \dfrac{b}{2}   =     \dfrac{ a }{2}  \ \ \ or \ \ \ x +  \dfrac{b}{2} =  -  \dfrac{a}{2}   \\  \\   \\

 \implies x  =  \dfrac{a}{2}  -      \dfrac{ b }{2}  \ \ \ or \ \ \ x  =  -  \dfrac{a}{2}   -   \dfrac{b}{2}   \\  \\   \\

 \implies x  =  \dfrac{a - b}{2}    \ \ \ or \ \ \ x  =   \dfrac{ - a - b}{2}    \\  \\

Hence, (a - b)/2 and (-a - b)/2 are the roots of the equation.

Answered by VelvetBlush
5

\bigstar{\huge{\underline{\mathsf{\red{Answer}}}}}

Given :-  \sf{{4x}^{2}  + 4bx - ( {a}^{2}  -  {b}^{2}) = 0 }

\longrightarrow\sf{ {x}^{2}  + bx - ( \frac{ {a}^{2} -  {b}^{2} ) }{4}  = 0}

\longrightarrow\sf{ {x}^{2}  + bx =  \frac{ {a}^{2} -  {b}^{2}  }{4}}

\longrightarrow \sf{{x}^{2}  + 2( \frac{b}{2} )x +   {( \frac{b}{2}) }^{2}   =  \frac{ {a}^{2}  -  {b}^{2} }{4}  +  { (\frac{b}{2} )}^{2} }

\longrightarrow\sf{ {(x +  \frac{b}{2}) }^{2}  =  \frac{ {a}^{2} -  {b}^{2}   +  {b}^{2} }{4}}

\longrightarrow\sf{ { (x + \frac{b}{2}) }^{2}  =  \frac{ {a}^{2} }{4}  = x +  \frac{b}{2}  = ± \frac{a}{2}  = x =±  \frac{a}{2}  -  \frac{b}{2}}

\longrightarrow\sf{x =  \frac{a - b}{2}  \:or \: x =  -  (\frac{a + b}{2} )}

Hence, the roots of the given equation are

\sf{( \frac{a - b}{2} ) \: and \:  - ( \frac{a + b}{2} )}

Similar questions