Math, asked by arif2011, 1 year ago

4x2+4bx-(a2-b2)=0 solved


arif2011: plz solved me
Inflameroftheancient: What are the answers?
Inflameroftheancient: x = a - b/2 and x = - (b + a)/2
Inflameroftheancient: Hello
Inflameroftheancient: ???
Inflameroftheancient: Main solve kar raha hoon

Answers

Answered by Inflameroftheancient
20

Hey there!

Expand this given equation to solve it via quadratic formula;

\bf{4x^2 + 4bx - (a^2 - b^2) = 0}

\bf{4x^2 + 4bx - a^2 - b^2 = 0}

Solving it by applying quadratic formula for equation "\bf{4x^2 + 4bx - a^2 - b^2 = 0}"

For a required quadratic equation of

\bf{ax^2 + bx + c = 0}

this, for which can be represented by the quadratic formula of :

\boxed{\bf{x_{1, \: 2} = \dfrac{- b +- \sqrt{b^2 - 4ac}}{2a}}} \\

Here, a = 4,  b = 4b,  c = - a^2 + b^2.

Solving for positive and negative values respectively:

\bf{\dfrac{- 4b + \sqrt{(4b)^2 - 16 (b^2 - a^2)}}{2 \times 4}} \\

\bf{\dfrac{- 4b + \sqrt{16b^2 - 16 (b^2 - a^2)}}{8}} \\

\bf{\dfrac{- 4b + \sqrt{16(b^2 - (b^2 - a^2))}}{8}} \\

\bf{\dfrac{- 4b + \sqrt{16a^2}}{8}} \\

\bf{\dfrac{- 4b + 4a}{8}} \\

\bf{\dfrac{4(a - b)}{8}} \\

\bf{\underline{\therefore \quad x_1 = \dfrac{a - b}{2}}} \\

Similarly find the other value of "x":

\bf{\dfrac{- 4b - \sqrt{(4b)^2 - 16 (b^2 - a^2)}}{2 \times 4}} \\

\bf{\dfrac{- 4b - \sqrt{16b^2 - 16 (b^2 - a^2)}}{8}} \\

\bf{\dfrac{- 4b - \sqrt{16(b^2 - (b^2 - a^2))}}{8}} \\

\bf{\dfrac{- 4b - \sqrt{16a^2}}{8}} \\

\bf{\dfrac{- 4b - 4a}{8}} \\

\bf{- \dfrac{4(b + a)}{8}} \\

\bf{\underline{\therefore \quad x_2 = - \dfrac{b + a}{2}}} \\

Therefore the final solutions for this quadratic equations are:

\boxed{\bf{\underline{x_1 = \dfrac{a - b}{2}}}} \\

\boxed{\bf{\underline{x_2 = - \dfrac{b + a}{2}}}} \\

Hope this extremely detailed process helps you and clears the doubts for solving it via quadratic equations!!!!!!


Inflameroftheancient: Done
Inflameroftheancient: CLick on the "red thanks button" plz
Similar questions