Math, asked by gauravsingh9986, 5 months ago

5/3,13/3,7/3,2/3,1/3​

Answers

Answered by pulakmath007
7

SOLUTION

TO DETERMINE

The average of

 \displaystyle \sf{ \frac{5}{3} \:,   \:  \:   \frac{13}{3} \: ,  \:   \frac{7}{3} \:  , \: \frac{2}{3}   \:,   \:  \frac{1}{3}  }

EVALUATION

Here the given observations are

 \displaystyle \sf{ \frac{5}{3} \:, \:   \frac{13}{3} \: ,  \:   \frac{7}{3} \:  , \: \frac{2}{3}   \:,   \:  \frac{1}{3}  }

Sum of the observations

 \displaystyle \sf{  = \frac{5}{3} \: +  \:   \frac{13}{3} \:  +  \:   \frac{7}{3} \:   + \: \frac{2}{3}   \: +    \:  \frac{1}{3}  }

 \displaystyle \sf{  = \frac{5 + 13 + 7 + 2 +  1}{3} \:  }

 \displaystyle \sf{  = \frac{28}{3} \:  }

Number of observations = 5

Hence the required average

 \displaystyle \sf{  = \frac{ \frac{28}{3}}{5}  \:  }

 \displaystyle \sf{  = \frac{28}{15}  \:  }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. 18 thousand crore divided by 9 crore

https://brainly.in/question/31888056

2. If 2x/3y=3y/4z then show that 4x square -9y square+16z square=(2x -3y+4z) (2x+3y+4z)

https://brainly.in/question/17124386

Similar questions