Math, asked by itzsehaj, 23 hours ago

5. Find the area of trapezium where length of parallel sides are 15 cm and 25 cm and the third side measures 12 cm.
no spamming allowed..

Answers

Answered by MystícPhoeníx
44

Answer:

  • 240 cm² is the required area of Trapezium.

Step-by-step explanation:

According to the Question

It is given that,

  • Length of Parallel side 15 & 25 cm
  • Distance between them ,h = 12cm

we have to calculate the area of trapezium .

As we know that ,

Area of Trapezium = ½ × (sum of parallel side) × distance between them

On substituting the value we get

↠ Area of Trapezium = ½ × (15+25) × 12

↠ Area of Trapezium = ½ × (40) × 12

↠ Area of Trapezium = 20 × 12

↠ Area of Trapezium = 240 cm²

  • Hence, the area of trapezium is 240cm².

Additional Information !!

\begin{gathered}\boxed{\begin {array}{cc}\\ \quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}d\sqrt {4a^2-d^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}

Answered by StarFighter
31

Answer:

Given :-

  • A length of parallel sides are 15 cm and 25 cm and the third side measures 12 cm.

To Find :-

  • What is the area of a trapezium.

Formula Used :-

\clubsuit Area Of Trapezium Formula :

\footnotesize \bigstar \: \: \sf\boxed{\bold{Area_{(Trapezium)} =\: \dfrac{1}{2} \times (Sum\: of\: Parallel\: Sides) \times Height}}\: \: \: \bigstar\\

Solution :-

Given :

  • Length of Parallel Sides = 15 cm and 25 cm
  • Height = 12 cm

According to the question by using the formula we get,

\footnotesize \implies \sf\boxed{\bold{Area_{(Trapezium)} =\: \dfrac{1}{2} \times (Sum\: of\: Parallel\: Sides) \times Height}}\\

\small \implies \bf Area_{(Trapezium)} =\: \dfrac{1}{2} \times (a + b) \times h\\

\implies \sf Area_{(Trapezium)} =\: \dfrac{1}{2} \times (15 + 25) \times 12\\

\implies \sf Area_{(Trapezium)} =\: \dfrac{1}{2} \times (40) \times 12\\

\implies \sf Area_{(Trapezium)} =\: \dfrac{1}{2} \times 480\\

\implies \sf Area_{(Trapezium)} =\: \dfrac{1 \times 480}{2}\\

\implies \sf Area_{(Trapezium)} =\: \dfrac{\cancel{480}}{\cancel{2}}\\

\implies \sf Area_{(Trapezium)} =\: \dfrac{240}{1}\\

\implies \sf\bold{\underline{Area_{(Trapezium)} =\: 240\: cm^2}}\\

\therefore The area of a trapezium is 240 cm² .

Similar questions