6(20c-1)-50c (xc-3)= 2loct2)
Answers
Answer:
cosec 6A = cot 6A + 3 cot 2A cosec 2A + 1
Then, we will prove it as :
To Prove:
cosec 6A = cot 6A + 3 cot 2A cosec 2A + 1
i.e. cosec 6A – cot 6A – 3 cot 2A cosec 2A = 1
Taking L.H.S. ,
cosec 6A – cot 6A – 3 cot 2A cosec 2A
= (cosec 2A)3 – (cot 2A)3 – 3 cot 2A cosec2A
= {(cosec 2A – cot 2A) ((cosec 2A)2 + (cot 2A)2 + cosec 2A cot 2A)}
= {1 ((cosec 2A)2 + (cot 2A)2 – 2 cosec 2A cot 2A + 2 cosec 2A cot 2A + cosec 2A cot 2A)} – 3 cot 2A cosec 2A
= {(cosec 2A – cot 2A)2 + 3 cosec 2A cot 2A} – 3 cosec 2A cot 2A
= (cosec 2A – cot 2A)2
= (1)2
= 1
Hence,
cosec 2A – cot 6A – 3 cot 2A cosec 2A = 1
⇒ cosec 2A = cot 6A + 3 cot 2A cosec 2A + 1
hope answer helpful
Step-by-step explanation:
mark me the brainliest
Refer to this attachment