Business Studies, asked by shifamalani17, 2 months ago

6/3 of a number exceeds its 3/5 by 8 the number is ​

Answers

Answered by DeeznutzUwU
1

       \underline{\bold{Answer:}}

       \dfrac{40}{7}

       \underline{\bold{Step-by-step-explaination:}}

       \text{Let the number be }x

       \text{According to the quesiton:}

\implies \dfrac63x = \dfrac35x + 8

       \text{Simplifying...}

\implies 2x = \dfrac{3x+40}{5}

       \text{Transposing } 5 \text{ to L.H.S}

\implies 2x(5) = 3x+40

       \text{Simplifying...}

\implies 10x = 3x + 40

       \text{Transposing } 3x \text{ to L.H.S}

\implies 10x - 3x = 40

       \text{Simplifying...}

\implies 7x = 40

       \text{Transposing 7 to R.H.S}

\implies \boxed{x = \dfrac{40}{7}}

Answered by pulakmath007
1

SOLUTION

GIVEN

6/3 of a number exceeds its 3/5 by 8

TO DETERMINE

The number

EVALUATION

Let the required number = N

So by the given condition

\displaystyle\sf{ \frac{6}{3} \times N =  \frac{3}{5} \times N + 8  }

\displaystyle\sf{ \implies \: 2N =  \frac{3N}{5} + 8  }

\displaystyle\sf{ \implies \: 2N  -  \frac{3N}{5}  =  8  }

\displaystyle\sf{ \implies \:  \frac{10N - 3N}{5}  =  8  }

\displaystyle\sf{ \implies \:  \frac{7N}{5}  =  8  }

\displaystyle\sf{ \implies \:  N  =  8  \times  \frac{5}{7}  }

\displaystyle\sf{ \implies \:  N  =    \frac{40}{7}  }

FINAL ANSWER

 \boxed{ \:  \: \displaystyle\sf{ The \:  required \:  number  =    \frac{40}{7}   \:  \: } \:  \: }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. The product of two successive multiples of 5 is 300. What are the values of these multiples?

https://brainly.in/question/26660243

2. the product of two successive multiples of 10 is 1200 . then find these multiples

https://brainly.in/question/28616922

Similar questions