English, asked by pentanamratha2637, 6 months ago

6
Find
quadric polynomial with zeroes (-2) and 1/2​

Answers

Answered by Niharikamishra24
4

{\underline{\sf{To\:Find}}}

Find the Quadratic polynomial whose zeroes are -2 and 1/2

{\underline{\sf{Theory}}}

If   \sf\alpha \: and \beta are the zeros of a quadratic polynomial f(x) . Then the polynomial f( x) is given by

 \sf \:f(x) = k(x {}^{2}  - ( \alpha   +  \beta )x +  \alpha  \beta )

or

 \sf \: f(x) = k(x {}^{2}  - (sum \: of \: the \: zeroes)x + product \: of \: the \: zeroes)

{\underline{\sf{Answer}}}

Let the zeroes of Quadratic equations be α and ß.

Thus ,

\sf\:\alpha=-2

and \sf\beta=\dfrac{1}{2}

Now sum of zeroes

\sf=\green{\alpha+\beta}

\sf=-2+\dfrac{1}{2}

\sf=\dfrac{-4+1}{2}

\sf=\dfrac{-3}{2}....(1)

and Product of zeroes

\sf=\blue{\alpha\times\beta}

\sf=-2\times\dfrac{1}{2}

\sf=\dfrac{-2}{2}

\sf=-1...(2)

Thus,

The required Quadratic equation is

 \sf \: f(x) = k(x {}^{2}  - (sum \: of \: the \: zeroes)x + product \: of \: the \: zeroes)

Put the values of Equation (1)&(2)

Then ,

\sf\:f(x)=k[x^2-\dfrac{(-3)}{2}x+(-1)]

\sf\implies\:f(x)=k(x^2+\dfrac{3}{2}x-1)

\sf\implies\:f(x)=k(\dfrac{2x^2+3x-1}{2})

Hence , the required Quadratic equation is

\sf\pink{f(x)=k(\dfrac{2x^2+3x-1}{2})}

where k = any non- zero real number

Similar questions