Math, asked by viral61, 3 months ago


6. Find the area of a sector of a circle with radius 6 cm if angle of the sector is 60°. Take= 22/7​

Answers

Answered by Anonymous
8

Answer:

Given:

  • Radius = 6cm
  • Angle of sector = 60°

Find:

  • Area of sector?

Solution:

{ \boxed{ \sf{Area  \: of  \: sector =  \frac{θ}{360}   \times π {r}^{2} }}}

 : { \implies{ \sf{Area =  \frac{60}{360}  \times  \frac{22}{7}  \times  {6}^{2} }}} \\  \\  : { \implies{ \sf{Area =  \frac{1}{6} \times  \frac{22}{7}   \times 36}}} \\  \\  : { \implies{ \sf{Area =  \frac{1}{{ \cancel{6}}}  \times  \frac{22}{7} \times { \cancel{ 36} } }}} \\  \\  : { \sf { \implies{Area =  \frac{22 \times 6}{7} }}} \\  \\ :  { \sf{ \implies{Area = 18.8}}}

Therefore,

  • Area of sector = 18.8cm²
Answered by nakrasameer18
1

Step-by-step explanation:

 \mathfrak{ \huge{ \green{ \underline{given}}}} \\  \mathfrak{ \large{ \red{radius \:  =  \: 6 \: cm}}} \\  \mathfrak{ \large{ \red{angle \: of \: sector \: (θ) = {60}^{o}}}} \\  \mathfrak{ \huge{ \green{ \underline{to \: find}}}} \\  \mathfrak{ \large{ \red{area \: of \: sector \:  =  \: ?}}} \\ \mathfrak{ \huge{ \green{ \underline{formula \: to \: be \: used}}}} \\  \mathfrak{ \large{ \red{area \: of \: sector \:  =  \:  \frac{θ}{360}  \:  \times  \: \pi {r}^{2} }}} \\  \mathfrak{ \huge{ \green{ \underline{solution}}}} \\  \mathfrak{ \large{ \blue{area \: of \: sector \: = \frac{θ}{360} \times \pi {r}^{2}}}} \\  \mathfrak{ \large{ \blue{area \: of \: sector \:  =  \:  \frac{60}{360} \times  \frac{22}{7} \times 6 \times 6  }}} \\  \mathfrak{ \large{ \blue{area \: of \: sector \:  =  \: \frac{1}{6} \times  \frac{22}{7} \times 6 \times 6  }}} \\  \mathfrak{ \large{ \blue{area \: of \: sector \:  =  \:  \frac{22}{7}  \times 6}}} \\  \mathfrak{ \large{ \orange{ \underline{area \: of \: sector \:  =  \:  \frac{132}{7}  {cm}^{2} }}}}

Similar questions