Science, asked by samu466, 10 months ago

7. Given tan A = 5/12 , find the other trigonometric ratios of the angle A. *

Answers

Answered by thinkinnovative
6

Hi,

I hope this helps you!

Attachments:
Answered by Anonymous
2

{ \huge{ \underline{ \underline{ \sf{ \green{GivEn : }}}}}}

• tan A = 5/12

{ \huge{ \underline{ \underline{ \sf{ \green{To \: find :}}}}}}

• The other trigonometric ratios of Angle A.

{ \huge{ \underline{ \underline{ \sf{ \green{SoluTion : }}}}}}

Given that,

tan A = 5/12

Where,

Perpendicular = 5

Base = 12

We need to use Pythagora's theorem to find hypotenuse.

We know,

Hypotenuse ² = Base² + Perpendicular ²

Now put the given values

⟶ H² = 12² + 5²

⟶ H² = 144 + 25

⟶ H² = 169

⟶ H = √169

⟶ H = 13

Hence, hypotenuse is = 13

___________________________________________________

We know,

• Cot A = Base/perpendicular

• Sin A = perpendicular/Hypotenuse

• Cosec A = Hypotenuse/perpendicular

• Cos A = Base/hypotenuse

• Sec A = Hypotenuse/Base

____________________________________________________

Now, find the other trigonometric ratios of Angle A.

⟶ Sin A = 5/13

⟶ Cot A = 12/5

⟶ Cosec A = 13/5

⟶ Cos A = 12/13

⟶ Sec A = 13/12

Similar questions