Math, asked by rajoraritk22, 4 months ago


7. If the selling price of 10 articles is the same as the cost price of 11 articles, find gain percent.

Answers

Answered by MagicalBeast
7

Let :

  • CP of one article = x
  • SP of one article = y

Given :

  • CP of 11 article = SP of 10 article

To find :

Gain Percentage

Formula used :

  1. Profit = SP - CP
  2. Profit% = Profit × 100 ÷ CP

Solution :

We know that,

 \sf \bullet \: \: Cost \:  price \:  of \:  1  \: article  \: = \:  x \\   \sf \implies \: Cost  \: price  \: of  \: 11  \: Article  \: = \:  11x

\sf \bullet \:Selling\:Price\: of  \: 1  \: article  \: = \:  y \\   \sf \implies \:Selling \:  Price  \: of  \: 10  \: article \:  = \:  10y

Also , given that ,

 \sf \bullet \: SP  \: of \:  10  \: article  \: =  \: CP \:  of  \: 11  \: article \:  \\  \\  \sf \implies \: 10y = 11x \\  \\  \sf \implies \: y \:  =  \:  \dfrac{11y}{10}

Therefore,

\sf \bullet \:Profit \: = SP \: of \: 1 \: article \: -\: CP \: of \: 1 \: article \\  \\ \sf \implies \: Profit \: = y - x \\  \\ \sf \implies \: Profit \:  =  \dfrac{11x}{10}  - x \\  \\ \sf \implies \: Profit \:  =  \dfrac{11x - (1 \times 10)x}{10}  \\  \\ \sf \implies \: Profit \:  =  \dfrac{11x - 10x}{10}  =  \dfrac{x}{10}

\sf \bullet \:Profit \% =  \:  \dfrac{Profit}{CP} \times  \: 100 \\  \\  \sf \implies \: Profit \%  =  \dfrac{ \dfrac{x}{10} }{x}  \times 100 \\  \\ \sf \implies \: Profit \:  \%  =  \:  \frac{x}{10 x}  \times 100 \\  \\ \sf \implies \: Profit \%  = 10  \%

ANSWER :

Gain (or Profit) % = 10%

Similar questions
Math, 10 months ago