7 sin² theta + 3 cos² theta = 4, find value of theta
Answers
Answered by
6
7sin2Ɵ + 3cos2Ɵ = 4
=4sin2Ɵ + 3sin2Ɵ + 3cos2Ɵ = 4
=4sin2Ɵ + 3(sin2Ɵ + cos2Ɵ) = 4 (sin2Ɵ + cos2Ɵ =1)
=4sin2Ɵ + 3 = 4
=4sin2Ɵ = 4 – 3 = 1
=sin2Ɵ = 1/4
=sinƟ = √1/4
=sinƟ = 1/2
=sinƟ =sin30 (sin30 = 1/2)
=Ɵ = 30
=4sin2Ɵ + 3sin2Ɵ + 3cos2Ɵ = 4
=4sin2Ɵ + 3(sin2Ɵ + cos2Ɵ) = 4 (sin2Ɵ + cos2Ɵ =1)
=4sin2Ɵ + 3 = 4
=4sin2Ɵ = 4 – 3 = 1
=sin2Ɵ = 1/4
=sinƟ = √1/4
=sinƟ = 1/2
=sinƟ =sin30 (sin30 = 1/2)
=Ɵ = 30
Answered by
7
Answer :-
→ ∅ = 30° .
Step-by-step explanation :-
We have,
→ 7 sin² ∅ + 3 cos² ∅ = 4 .
⇒ 4 sin²∅ + 3 sin²∅ + 3 cos²∅ = 4 .
⇒ 4 sin²∅ + 3( sin²∅ + cos²∅ ) = 4 .
⇒ 4 sin²∅ + 3( 1 ) = 4 . [ ∵ sin²∅ + cos²∅ = 1 ] .
⇒ 4 sin²∅ + 3 = 4 .
⇒ 4 sin²∅ = 4 - 3 .
⇒ 4 sin²∅ = 1 .
⇒ sin²∅ = 1/4 .
⇒ sin ∅ = √(1/4) .
∴ sin ∅ = 1/2 .
But, sin 30° = 1/2 .
Then, sin ∅ = sin 30° .
Hence, it is solved .
Similar questions